Automatic On-Line Signature Verification
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Automatic on-line signature verification is an intriguing intel- dimensions of time and force when we signed, the use of
lectual challenge with many practical applications. | review the pen dynamics during signature production—over and above
context of this problem and then describe my own approach to it, that of signature shape—would be very useful in detecting

which breaks with tradition by relying primarily on the detailed f . d ic inf . h .
shape of a signature for its automatic verification, rather than orgeries, as dynamic information pertinent to a signature

relying primarily on the pen dynamics during the production of IS not as readily available to a potential forger as is the
the signature. | propose a robust, reliable, and elastic local- shape of the signature, given just the signature’s off-line
shape-based model for handwritten on-line curves; this model specimensHowever, | have seen no substantive evidence to

Is generated by first parameterizing each on-line curve oVer its o eftect that our pen dynamics is as consistent as, or more
normalized arc-length and then representing along the length !

of the curve, in a moving coordinate frame, measures of the consistent than, our final signature shape when we sign.
curve within a sliding window that are analogous to the position My own informal experiments indicate that we typically
of the center of mass, the torque exerted by a force, and the exhibit similar temporal variations over the production of
moments of inertia of a mass distribution about its center of mass. gjmilar handwritten curves: In general, our speed along

Further, | suggest the weighted and biased harmonic mean as a_. . .
graceful mechanism of combining errors from multiple models of high-curvature curve segments is low relative to our speed

which at least one model is applicable but not necessarily more &long low-curvature curve segments, with our average
than one model is applicable, recommending that each signature overall speed varying greatly from one instance of a pattern
be represented by multiple models, these models, perhaps, locako another irrespective of whether we are producing our
and global, shape based and dynamics based. Finally, | outline oyn pattern or forging someone else’s. This observation
a signature-verification algorithm that | have implemented and . -
tested successfully both on databases and in live experiments. ;uggest; tha_t at least the requw_emen_t c_)f consistency over
time during signature production is of limited value beyond
that of consistency over shape. At any rate, irrespective of
the velocities and forces generated during the production of

Signature verification is an art. Whereas we may bring 4 signature, for us to declare two signatures to be produced
objective measures to bear on the problem, in the final )y, the same individual, clearly, it is necessary that the
analysis, the problem remains subjective. This art is both shapes of the signatures match closely.

well studied and well documented as it applies to human  pence | have based my signature-verification strategy
verification of signatures whose only records are visual primarily on the shapes of signatures: although, at this

[13], [5], [10]—that is, as it applies to signatures during ,qiny | 'do depend on time, this dependence is weak and
whose production no measurement is made of the pen tra~, .4 pe removed, as | shall explain. Thus although my
jectory or dynamics. Let us call such signatures, for which o ification technique does require the capture of pen tra-

we have on(ljy a Stat";] visual rt(ejcort_if,f-llnr:a, and letus call 0045165 during signature production, unlike other reported
signatures during whose production the pen trajectory or , ine signature verification techniques, my technique can

?hy nam|_?s |st.capt:¢1ref(fir|1.—llne.Wh(;,\reas sttemfptlf to autl?mhatet do without the explicit capture of any temporal, force, or
e verinication of ofi-lin€ signatures have fallen well shor pressure information during signature production.

of human performance to this point, | shall demonstrate that | propose that each handwritten on-line signature be

e oeon | St s vt (1S by mulple modes ol nd gobal, Shepe
success of automatic on iine si nat%re verification hinges based and time based, including a model that is local and
on the capture of velocities o? forces during si natt?re purely shape based. Whereas global models are easier to
cap - g sigha devise than local models—and, hence, global models are
production. Whereas velocities and forces can assist us , :
; . . . e more widely used than local models—for signatures whose
in automatic on-line signature verification, | contend that . : .
. various instances are shaped consistently, global models are
we should not depend on them solely, or even primar- S
. . : : less discriminating than and less robust than local-shape-
ily. If we were indeed unavoidably consistent over the o o '
based models. My principal contributions to automatic
Manuscript received September 5, 1996; revised November 22, 1996. gn_|ine signature verification are twofold. First, | suggest
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vic@bell-labs.com). the weighted and biased harmonic mean as a gracefu
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I. INTRODUCTION

0018-9219/97$10.000 1997 IEEE

PROCEEDINGS OF THE IEEE, VOL. 85, NO. 2, FEBRUARY 1997 215



which at least one model is applicable but not necessarily | would like to point out here, that because of their
more than one model is applicable. Second, | devise atime independence, most of the tools | have developed
robust, reliable, and elastic local-shape-based model forfor the elastic local comparison of handwritten shapes are
handwritten on-line curves. This model is generated by immediately applicable both to on-line handwriting verifi-
first parameterizing each on-line curve over its normalized cation—which could be used to verify a user’s identity by
arc-length and then representing along the length of the requesting the user to write something specific—and to on-
curve, in a moving coordinate frame, measures of the curveline handwriting recognition. Note here, however, that my
within a sliding window that are analogous to the position use of the pen trajectory to parametrize each on-line curve
of the center of mass, the torque exerted by a force, and theimplies that visually identical curves that are traversed
moments of inertia of a mass distribution about its center differently will be represented differently. Whereas this
of mass. | have implemented and tested my signature-aspect of the representation | propose is advantageous to
verification algorithm successfully both on databases and verification, it is disadvantageous to recognition. Further,
in live experiments. note that signature verification is both easier and more diffi-
Successful on-line signature verification that is based on cult than handwriting recognition. Verification is easier than
comparing the varying local shapes of signatures offers recognition because, in verification, we knevpriori what
several important advantages over alternative techniquespattern to expect: All that successful verification entails is
especially over those that are not shape based. the comparison of an input pattern with a stored model.

« Local-shape-based signature verification is more likely However, verification is more difficult than recognition
than alternative techniques to reject only those genuine because, unlike in recognition, where we are justified in
signatures that will be accepted by original signers assuming a cooperative human, in verification, we must
as nonrepresentative of their signatures, because sucfllow for an adversary who is keenly intent on deceiving
signers would typically base their judgment of the the system.Hence, whereas the answer in verification might
fidelity of their signatures on am posteriori visual ~ Simply be ayesor a no, successful verification requires
examination of the detailed shapes of their signatures, the ability to detect subtle differences between patterns,
rather than on the velocities or forces generated during @n ability not required by recognition. More specifically,
the production of these signatures. Such acceptancesuccessful signature verification hinges on the ability to
by nonfraudulent signers—of the inevitable rejection distinguish between inadvertent intrasigner variations on
of some genuine Signatures by a Signature_verification the one hand, and intersigner variations and advertent
system—is key to the acceptance of the signature- intrasigner variations on the other handlVe shall discuss
verification system by consumers in the marketplace. this assertion at length in Section il.

« Local shape-based comparisons of signatures, in con- | have organized this paper into ten sections. In
trast to global comparisons, avoid lumping together Section I, | categorize the various techniques commonly

isolated mistakes, such as inadvertent isolated gaps inon-line signature verification as recorded in the published
writing, and errors caused by systematic deviations, literature. In Section V, | highlight the key features of
such as those due to different writing styles. my approach, several of these features differentiating my

« Local-shape-based signature verification can po- approach from the prior art. In particular, | flesh out the
tentially highlight, for human consumption, local following fundamental concepts that underlie my approach:
“nonobvious” similarities and discrepancies between
the shapes of two signatures—perhaps so that a
customer or a court of law caseewhy a particular
signature was accepted or rejected.

» Shape-based signature verification does not require us
to be consistent over the additional dimensions of time
and force when we sign, a requirement that would
alter the traditional expectation from us that we be
consistent over only the shape of our signature when
we sign. Alteration of this traditional expectation, it
seems, would force many of us to change “the way in

which we do business,” weakening what is probably |n Section VI, | outline my algorithm, which | have im-

the strongest argument in favor of the continued use of plemented and tested both on databases and in live ex-

handwritten signatures for verification (see Section Il). periments. In Section VII, | illustrate my algorithm with
Of course, if we were unavoidably consistent over the a detailed example. In Section VIII, | describe the perfor-
dimensions of time and force when we signed, this last mance of my implementation on three databases created
item would be a nonissue. by Bell Laboratories. In Section IX, | describe a particular

A) harmonic mean;

B) jitter;

C) aspect normalization;

D) parameterization over normalized length;
E) sliding computation window;

F) center of mass;

G) torque;

H) moments of inertia;

I) moving coordinate frame and saturation;
J) weighted cross correlation and warping.
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signature-verification system that runs my algorithm in real us decide whether to field test a system. | have come up
time on a notebook personal computer, with this computer with the following two criteria to evaluate a signature-
coupled to an electronic writing tablet for capturing on-line verification systenthat is yet to be field tested; we shall
signatures. | conclude with Section X, where | list some discuss both criteria in detail.

of the outstanding issues in automatic on-line signature Criterion 1. When you try the system in person, it must

verification. work.
Criterion 22 When you test the system on large databases,
Il.  ALTERNATIVES TO SIGNATURE VERIFICATION it must exhibit low statistical error rates.

Signature verification is only one of several techniques Neither criterion is sufficient, and both are necessary.
commonly used to verify the identities of individuals. Criterion 1 is not sufficient in itself because any evidence

Broadly, the various techniques used for this purpose adoptof performance gathered from one or a few isolated indi-
one or more of five strategies [19]. viduals is anecdotal: Chances are slim that these individuals

are representative of the population at large. Criterion 2 is
1) You remember some information, such as a passwordnot sufficient in itself as, in the evaluation of a verification

or a personal identification number (PIN). system, unlike in the evaluation of a recognition system,
2) You are privy to some personal detail, such as your it is necessary to consider determined forgers who have
date of birth or your mother’'s maiden name. access to feedback from the system. The difficulty of a
3) You possess some object, such as a magnetic card okyccessful forgery, given such feedback, provides a more
a key. realistic assessment of the vulnerability of a verification
4) You possess some unique physical characteristic, suchsystem than does a preexisting database. Bear in mind here
as a fingerprint or a retinal vascular pattern. that genuine signers would also adapt to the system in

5) You possess the ability to perform some action con- the marketplace, learning quickly what it is they have to
sistently at will—such as sign your name or speak a (g to have their signatures accepted by the system in the
phrase—in a fashion that is difficult to duplicate by st try—assuming, of course, that the answer put out by
others. the system is correlated to characteristics of the signature

apparent to the signer. This raises two important points.

One, as users of the system, both genuine signers and

forgers, adapt to the system, the observed performance of

the system will change: Both fewer genuine signers and
fewer forgers will be rejected by the system. Two, the

observed performance of the system for new users of the
has a social stigma associated with it because of this System will be different than that for accustomed users. Let

strategy’s widespread use in the criminal justice system. US Now discuss both Criterion 1 and Criterion 2 in turn.
Further, Strategy 4) is easier to compromise under coercion C'iterion 1, of course, begs the issue unless we can reach
than is Strategy 5), not only because the latter entails aagregment on whatork means. | can think of at least three
voluntary action, but also because this action is likely to conditions that must be met for us to declare a system to
deviate from its norm under stress. Among the various WOrk when it is tried in person.

possibilities that lie within the realm of Strategy 5), the ~ * The system must recognize your visually similar

See [14] for a detailed discussion of the various possi-
bilities. Among the above strategies, Strategies 1)-3) can
be inadvertently or intentionally compromised. In contrast,
Strategy 4) cannot be compromised, and Strategy 5) is
generally difficult to compromise. Strategy 4) is clearly

more objective than Strategy 5). However, Strategy 4)

handwritten human signature is without doubt the most scribbles consistently, notwithstanding discrepancies
popular, especially in financial transactions. Further, there in velocities during the production of these scribbles,
seems to exist a strong cultural bias toward the continued and notwithstanding minor inadvertent discrepancies
use of handwritten human signatures for authorization and in their shapes.
authentication. Thus, there is money to be made in the <« You must find it difficult, if not impossible, to forge
robust and reliable automation of signature verification. someone else’s signature successfully—even more so,
Such an automation would not only detect attempts at fraud, to do so consistently—irrespective of whether you
but also greatly discourage such attempts; we saw several trace the signature, copy the signature, practice the
additional advantages of automatic signature verification in signature first, have complete knowledge of the sig-
the introduction. nature’s generation, or know precisely the strategy
adopted by the signature-verification system.

Ill.  EVALUATING PERFORMANCE * You must not be able to generate a scribble that
For a signature-verification system to be useful, the is visually disparate from your signature and is yet
system must commit few errors in practice. The strategy =~ accepted by the signature-verification system as your

often adopted to obtain an indication of a system’s error signature.

rates, without actually introducing the system into the The first condition enables genuine transactions. The second
marketplace, is tdield testthe system on a limited scale; condition hinderssecond-party fraug-that is, fraud by an

but even a limited field test can be expensive and time entity other than the genuine signer. The third condition
consuming. Hence, it is useful to devise criteria to help hindersself fraud—that is, fraud by the genuine signer.
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Omission of the third condition would open up the possi- 2) simplicity of the genuine signature, this simplicity
bility of a genuine signer authorizing a transaction with the characterized by the domination of the signature by
a priori intent of later denying this authorization by pointing a few low-curvature strokes.
to the visual discrepancy between the authorizing signature ) ) ]
and the expected signature as proof of second-party fraud.The simpler the signature, the greater the consistency
In the context of on-line signature verification, we need needed to thwart forgeries. Another factor that contributes
to qualify the first condition above aimed at the in-person 0 successful forgery is inherent similarity between the
evaluation of a signature-verification system—namely, the Writing style of the forger and the writing style of the
condition that the system must recognize your visually sim- original signer. Deftness of the forger at drawing also helps,
ilar scribbles consistently. In on-line signature verification, With such deftness enabling the forger to reproduce pen
we require that all genuine instances of a signature be strol_<es gracefull_y and Wi_th control. In the_circumstances
traversed qualitatively similarly as functions of time (i.e., Particular to my live experiments, the capacity of the forger
with similar trajectories), irrespective of whether we require t0 understand the feedback provided by the verification sys-
that these instances be produced quantitatively similarly €M, perhaps only intuitively, and learn from this feedback
as functions of time (i.e., with roughly similar, or even Was also a factor. Another contributing factor, not to be
proportional, velocities). Whereas the latter requirement overlooked, is the determination of the forger to succeed.
might be an imposition on genuine signers as we discussed, Criterion 2 for evaluating a signature-verification system
the former requirement is met naturally by genuine signers. &lS0 requires some background—as did Criterion 1. Now,
The critical advantage of on-line signatures over off-line N any verification task, there are two types of errors we
signatures in the automation of their verification is precisely ¢&n commit: false rejects and false accepts. In the current
the availability of the pen trajectories during the production COntext, afalse rejectis a signature that we reject even
of on-line signaturesit is these trajectories that we match in  though the signature is not a forgery, andagse accept
on-line signature verification, rather than their end products, IS @ Signature that we accept even though the signature
which are just off-line signatures. If we assume that the IS @ forgery. Clearly, we can trade off one type of error
information in each on-line signature is a superset of for the other type of error. In particular, if we accept
the information in its off-line counterpart, it is clear that €Very signature as a genuine, we shall have 0% false
successful automatic on-line signature verification is a rejects and 100% false accepts, and, if we reject every

precondition for successful automatic off-line signature Signature as a forgery, we shall have 100% false rejects
verification. and 0% false accepts. Thus, in the statistical evaluation of

| stress again that Criterion 1 is essential for evaluat- & Verification system, whether on a database or otherwise,

ing a verification system, more so than for evaluating a W& must determine the percentage of false accepts as a
recognition system, because the quality of a verification function of the percentage of false rejects. The ensuing
system hinges on the inability of determined individuals to curve—theerror tradeoff curve-which trades off false
defeat the system. Then, to evaluate a verification system@cCepts for false rejects, is often characterized bgdtsal-
thoroughly, we must provide determined forgers complete €fTor rate, which is the error rate at which the percentgge
access to the system—access such as forgers might gaiﬁ’f false accepts is equal to the percentage of false rejects.
once the system is introduced into the marketplace. suchThe equal-error rate, despite its convenience as an indicator
access provides individuals with the opportunity to exper- Of System performance, of course, is no substitute for the
iment with the system, to learn from the system response, actual tradeoff curve, especially if we intend to operate the
and eventually to discover loopholes in the system, if any. It SyStém in a range outside the immediate vicinity of the
is prudent to assume that a system’s loopholes would soone€dual-error rate. _
or later be discovered if the system were ever introduced The specification of a tradeoff curve relating false accepts
into the marketplace. Whereas the evaluation of Criterion 1 0 false rejects assumes knowledge of, and agreement on, a
is subjective, | must mention that | have had little difficulty ground truth Inreality, itis not always clear what a false re-
finding willing and determined forgers: Most individuals 1€Ctis. In particular, is it an error to reject a signature that is
seem to relish the gamelike nature of trying to beat the Produced by the original signer but thabkssubstantially
system, and go to the task with a vengeance. However, different from that signer’'s specimen signatures? If not,
none of my forgers have been professional forgers. who or what decides whether two signatul@sk different?
What factors contribute to a successful forgery? Let If yes, are we affording opportunities to individuals to
us assume that the forger has complete knowledge ofdisown their signatures after the fact? Note that, even if
the production of the signature to be forged and of the W€ were to reach a consensus on what constitutes a false
signature-verification strategy used. Then, in my experi- '€J€ct, two systems with similar error tradeoff curves could

ence with amateur forgers, theo foremost factors that perform very differently in practice. In particular, the nature
contribute to a successful forgeare these: of the false rejects—and false accepts—of the two systems

could be quite different. Such a difference can be very
1) inconsistency across instances of the genuine signa-important from a practical standpoint. For instance, whereas
ture used by the verification system to build a model a consumer might be willing to assume responsibility for

of the signature; a false reject that is visually dissimilar to the consumer’s
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typical signature, the very same consumer is likely to be of the signature they are trying to forge, with little attention
annoyed if a false reject is visually similar to the consumer’s to time. | must emphasize that | am not arguing here that
typical signature. Thus, given two systems with similar the temporal characteristics of signature production are not
error tradeoff curves, one system might be accepted by thepotentially useful for automatic signature verification, but
marketplace, and the other rejected. rather that these characteristics should not be the primary
It is thus clear that the evaluation of a signature- determinants of our decision.

verification system cannot simply be reduced to a graph, or The various strategies reported in the literature for the
to a set of numbers. Numbers might help, but they cannot automatic verification of on-line signatures rely typically ei-
suffice; at best, numbers obtained from a database, or fromther on comparing specific features of signatures or on com-
a field trial, provide a sample of system performance. It paring specific temporal functions captured during signature
should not surprise us that there is no clear-cut objective production, or, perhaps, on both [9]. Although the signature
criterion to evaluate a signature-verification system. features that are compared are typically global—such as the
Signature verification, after all, is an art, and even though total time taken, or the average or rms speed, acceleration,
we might bring objective measures to bear on the problem, force, or pressure [2], [12]—these features could be local,
in the final analysis, the problem remains subjective. such as the starting orientation or speed. Typical signature
functions that are compared include pressure versus time,
and the horizontal and vertical components of position, ve-
locity, acceleration, and force, each versus time [18]-[20].
The more sophisticated among the temporal-function-based
approaches allow the horizontal axes of the functions to
warp during comparison [18], [20], and approaches that rely
on comparing temporal functions reputedly perform better,

IV. PRIOR ART

My review of the literature, and of the most com-
prehensive published survey [9] with its accompanying
bibliography [15] (see also [7]), indicates the existence
of a widely held belief that the temporal characteristics

of the production of an on-line signature are key to the
signature’s verification. I am not sure what the basis for
this belief is—after all, we have for centuries relied on a
visual examination of a signature to verify the signature’s
authenticity. Of the many possible reasons for this belief,
two reasons come readily to mind. The first reason is that,

in general, than approaches that rely solely on comparing
features. Barring the straightforward representation of the
coordinates, orientation, and curvature of a signature along
its length, all as functions of time, few attempts have been
made to characterize the local shape of a signature. One
exception to this observation is the work of Hastie and his

in experiments, the temporal characteristics of signature coauthors [6], who match signatures by first segmenting
production are seen to provide better system performancethem at places of low speed and then seeking the optimal
than alternate characteristics. The second reason is that th@ffine transformation between each segment and its stored
production of a signature is believed to be necessarily a prototype. However, segmentation-based approaches are, in
reflex action or a ballistic action rather than aleliberate general, not robust owing to their rapid deterioration in the
action[9]. Ballistic handwriting is characterized by a spurt presence of segmentation errors that are bound to occur
of activity, without positional feedback, whereas deliberate sooner or later.
handwriting is characterized by a conscious attempt to | have had the opportunity to try out, in person, only one
produce a visual pattern with the aid of positional feedback. well-known signature-verification system created outside

| challenge, on two counts, the belief that signature Bell Laboratories, and the various statistical results reported
production is necessarily ballistic and also the more widely in the literature are difficult to compare because of the
held notion that the temporal characteristics of signa- very disparate conditions under which these results were
ture production are key to signature verification. The first produced. In database testing, we can in practice obtain
count is that many signers—including most of my ac- almost any desired statistical tradeoff between false rejects
guaintances—can produce their signatures both ballisticallyand false accepts if we allow ourselves the luxury of
and deliberately, with the exact mechanism of production suitably pruning or restricting the database on which we test
in a particular instance depending on the urgency and the system. Such pruning is often easy as the performance
importance of the task. In general, it is fast handwriting of a verification system on a database is typically limited by
that is ballistic [3] rather than signature productiper se the database’goats a term used to describe the typically
and many of us have and exercise control over the speedfew individuals who account for a large majority of the
with which we sign. The second count is that even if we errors—in our case, by producing signatures that are either
were to group together all the instances of the ballistic inconsistent or degenerate; see, for instance, [2] and [9].
production of a signature, there is no compelling reason Note, here, also that the false-reject statistics obtained in
why these instances would exhibit temporal consistency. | laboratory settings are likely to be overly optimistic vis-
suspect that the apparent success of the use of the tempordl-vis results that would be obtained in more unregulated
characteristics of on-line signatures in their verification is, settings [9]. Further, | point out that the validity of many
at least partially, an artifact of the testing methodology: of the results reported in the literature is suspect in real-
It is clearly easy to detect forgers on the basis of time world settings, because, in most experiments, forgers are
when these forgers, being unaware that time is critical to not provided all the knowledge that they could gain over
verification, are making every effort to reproduce the shape time if the verification system were ever introduced into the

NALWA: AUTOMATIC ON-LINE SIGNATURE VERIFICATION 219



marketplace. For instance, it is clearly easy to detect forgersadjustments in the pen trajectory during the course of
who are making every effort to duplicate a shape while all signing, a large value of jitter often indicating a forgery. The
that the verification system is measuring is the total time third idea, that of aspect normalization, allows individuals
taken; under such circumstances, a forger would clearly to scale their signatures unequally along the horizontal
have greater success by ignoring the shape completely andnd vertical dimensions, such unequal scaling of signatures
concentrating on duplicating the total time taken. | believe often observed in practice.
this artifact of testing to be a significant contributor to the  The other ideas relate to creating and comparing robust,
widespread emphasis given to the temporal characteristicsreliable, and elastic local-shape-based models of hand-
of on-line signatures in their automatic verification. written on-line curves. The local-shape-based model of a
There is a plethora of reasons other than those that | handwritten on-line signature | propose is based on first
have just mentioned why a direct comparison of the various parameterizing the signature over its normalized arc-length,
published statistical results is of little value. Some tests and then representing, as functions of arc-length, entities
allow each user multiple tries to have a signature validated analogous to the position of the center of mass, the torque
by the verification system, whereas other tests do not permitexerted by a force, and the moments of inertia of a mass
multiple tries! In some experiments, the users are highly distribution about its center of mass, each measurement
motivated—for instance, by financial reward [19]—whereas made over a window that is sliding along the length of
in other experiments, the users are largely unmotivated. Inthe signature in unison with the motion of a coordinate
some experiments, the false-accept statistics are based oframe with respect to which the measurement is made.
so-called random forgeries that typically have little or no Let us call these functions of arc-length—functions that
similarity to the genuine signatures they are supposed towe are using to represent the signature—eharacteristic
represent. Arandom forgery as its name suggests, is a functions of the signature. The proposed characteristic
pattern that by design is not related to the original signature; functions provide robust descriptions of local shape that
such a forgery is to be expected when a forger does not havedepend on the position, orientation, and curvature of the
ready access to the original signature, as might happen, forcurve along its length. The straightforward approach to
instance, if a credit card were stolen in transit before a measuring the orientation or curvature of a curve would
genuine signature could be produced on the card. involve estimating the curve’s derivatives, an operation that
All the reasons stated above point to the difficulty of is well known to emphasize noideGiven the proposed
comparing the various published statistical results. Hence, representation, we compare a curve to its prototype by
as a practical matter, we have no choice but to take recoursecomputing the cross correlation of each of the curve's
to our common sensin judging the quality of the various  characteristic functions with the function’s prototype. In the
efforts toward automatic on-line signature verification. My computation of these cross correlations, we weight more
own examination of the various published techniques makesheavily those portions of each characteristic function over
me very sceptical of their efficacy in practice as stand- which the original signer is relatively consistent, and less
alone techniques. This scepticism is borne of my conviction heavily those portions over which the original signer is
that the varying local shape of a signature, as we proceedrelatively inconsistent. Further, in the computation of these
along the length of the signature, is key to the signature’s cross correlations, we allow all the characteristic functions
verification, and, in my judgement, the published techniques of a curve to warp simultaneously along their lengths so
are by and large conceptually inadequate at capturing theas to maximize an overall measure of the cross correlation
local shape of a signature. between the characteristic functions and their prototypes.

V. KEY CONCEPTS A. Harmonic Mean

In this section, | describe some of the key ideas that un- The most popular method of combining two errors is
derlie my approach to on-line signature verification. Many to compute their root weighted-mean square. In particular,
of these ideas are novel, and others have not been appliedf We represent two errors by; and &, then theroot
previously to signature verification. The presentation of the Weighted-mean squaref the two errors ist = [a1&7 +
ideas might seem disorderly, but | shall bring all of them @2£3]*/?, whose isocontours are ellipses—that is, each of
together in an algorithm in Section VI. whose loci in the;—£; plane for a particulaf is an ellipse.

The first idea, that of the harmonic mean, provides a An immediate generalization of this error combination is
graceful meCh.an'Sm of combining e”QfS from multiple 2The effect of differentiation on signal noise is appreciated easily
models of which at least one model is applicable, but by examining the effect of differentiation’s discrete implementation,
not necessarily more than one model is applicable. The differencing, on a discrete signal. Consider a discrete one-dimensional (1-

. " . D) signalz; corrupted by additive, i.i.d., zero-mean noigewith variance
second idea, that of jitter, provides a measure of any abruptai. Say,s; = i + n;. Then, the noisén:+ — ;) in the first difference

(si41 — s;) of the signal is easily seen to have zero mean and variance
1if we assume that each attempt by an individual to have a signature 20?, [11]. That is, the variance of the noise in the first difference of a
accepted by a verification system is independently identically distributed signal is twice the variance of the noise in the original signal. It follows

(i.i.d.), and that the probability of a false reject in a single tryijs and that the variance of the noise in theth difference of a signal i2"

that the probability of a false accept in a single trypis < 1, then the times the variance of the noise in the original signal. Finally, note that the
probability of a false reject in each of tries ispl*, and the probability straightforward discrete computation of a curve’s orientation and curvature
of a false accept in at least one wftries is approximately:p, . entails taking its first and second differences, respectively.
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/
& = allé|™ + daf|é&|™, where aq, ap, and n are all

positive. Fig. 1 illustrates the isocontours of this expression Fi9- 2. Superhyperbolas.
for variousn when¢ = 1; curves such as those illustrated,
which are generalizations of ellipses, are calkgerel- gz

lipses[11]. A possible drawback of this ubiquitous family

of error combinations is that this family takes into account T \
each of the two errorgyrespective of the other errorin 6

a sense, this mechanism of combining errors AND’s the

errors—assuming here that a low error corresponds to a 54

Boolean 1, and a high error corresponds to a Boolean 0.

But, what if we wish to OR the errors? We might want a1

to do this, for instance, if; and &, are derived from two

different models of which at least one model is applicable, 31 /@\

but not both models are necessarily applicable.

One mechanism of ORing two errors, if you will, is to ol
replace the superelliptical isocontours above by superhy- Lﬁzl
perbolic isocontours. We can accomplish this goal easily by 1
constrainingn in the superelliptic error expression above
to be negative instead of positive. Say,— —n. Then we 0+—+— } } } } { — £
get1/&™ = 1/(a*|&1™) + 1/(a5|&2|™), whereay, as, o 1 2 3 4 5 6 7 !

andm are all positive. Fig. 2 illustrates the isocontours of Fig. 3.
this expression for various: when¢ = 1; curves such as

those illustrated, which are generalizations of hyperbolas,

are calledsuperhyperbolasNow, if we putm = 1, and the average of the reciprocals of the individual numbers,
assume that botty andé, are positive, theg will become as reflected in the above expression for the harmonic mean

Isocontours of weighted harmonic mean.

the weighted harmonic meaof £, andé,. That is, we will ~ [1]. Before we move on, note that, if we had put = 2
have instead ofm = 1 while deriving the above expression for
1 1 1 the weighted harmonic mean, thénwould have become
E = —5 + —5 the rootweighted-harmonic-mean squané ¢; andé,, and
fe1 8252 we would have
or equivalentl 1/2
q Y - st 1Y
_ a§a2€1§2£ ' &+ w8
a1é1 + a262
) ] ) ) where we have made the substitutions = a7 and
The isocontours of the weighted harmonic mean are simply ay = dl.

hyperbolas with asymptote§ = {/a; and&, = ¢/a, as Finally, let us further generalize the notion of the
illustrated in Fig. 3 fora; = 2 anday = 1. Now, if we put  \yeighted harmonic mean of two numbers by allowing
ay = az = 2 in the expression for the weighted harmonic  gach of the two numbers to be biased. In particular, let us

mean will simply become the unweighted harmonic mean  yafine theweighted and biased harmonic megnof two
of ¢ and &. Whereas the unweighted arithmetic mean numbersé, and & to be

of a collection of numbers is their average—the sum of
the numbers divided by their count—the reciprocal of the __ma& 06+ b) )
unweighted harmonic mean of a collection of numbers is a1(§1 +b1) + ax(€2 + b2)
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ig urrents through resistors in parallel and series Fig. 5. Jitter.

Here, £ is said to be biased by, and & by b>. What
such biasing does to the hyperbolic isocontours of the
weighted harmonic mean—that is, to isocontours such as
those illustrated in Fig. 3—is translate them by, along
the ¢;-axis and by—b, along thef,-axis. Fig. 6. Aspect variation.

Our discussion of various combinations of individual er-
rors here applies, in all its generality, equally well to errors L
from multiple models as it applies to errors from just two C. Aspect Normalization
models. In particular, wheregs = 3, a?|¢; + b;|", where Individuals do not scale their signatures equally along
a; andn are positive, provides a convenient mechanism the horizontal and vertical dimensions when they sign [4].
of ANDing &; in a manner of speaking—assuming that a You might, for instance, make your signature fatter without
small ¢; corresponds to a Boolean 1, and a latgeo a making it any taller, as illustrated in Fig. 6. Hence, before
Boolean 0—/£™ = 3;1/(a™|&; + b;|™), wherea; andm we verify the shape of a signature, we must standardize the
are positive, provides a convenient mechanism of ORjng  Signature’s ratio of height to width—this ratio called the

For those of you familiar with elementary circuit theory, Signature’s aspect. A measure agpectthat | have found
an electrical interpretation of the harmonic mean is instruc- useful is
tive here. Given a set of resistors arranged in parallel, as in total sum of vertical displacements
Fig. 4(a), the overall current through the set of resistors Aspect= fotal sum of horizontal displacements
will be inversely proportional to the harmonic mean of
the individual resistances in the set; in such a circuit 1he displacements in this expression are the unsigned
configuration, ifany of the resistors arranged in parallel has Vertical and horizontal components of the arc-lengths of
a low resistance, the overall circuit current will tiarge. curves fitted to the data.
In contrast, if the resistors were arranged in series, as in
Fig. 4(b), the overall current would be inversely propor- D. Parameterization over Normalized Length
tional to the arithmetic mean of the individual resistances;  The parameterizatiorof a curve is the creation of a one-

in such a circuit configuration, iny of the resistors in  to-one mapping from a subset of the real line onto the
series has &igh resistance, the overall circuit current will  curve. The real line here, which is saidparameterizehe
be small curve, provides an index grarameterby which we can
conveniently locate any point on the curve. Once we have
B. Jitter parameterized a curve, we can desgribe various properties
' of the curve, such as the orientation of the curve, as
When individuals attempt to copy or trace a preexisting functions of the curve's parameter.
curve closely, as often happens in forgery, they produce (Qne possible parameter of an on-line curve is the time
a ‘“jitter” owing to the act of constantly correcting the instant(s), relative to an arbitrary fixed time, at which the
pen trajectory to conform to the priori curve. Such  pen is located at a position along the curve. This particular
jitter is illustrated in Fig. 5. This jitter often exceeds the choice of parameter seems to have been adopted universally
quantization errors that result from the use of a discrete for on-line signatures in the past, in part, perhaps, because
spatial sampling grid to capture on-line signatures—these of the ready availability of the pen trajectory as a function of
quantization errors, of course, depending on the rate of pentime, and in part because of the widespread belief discussed
motion visa-vis the temporal sampling rate. A measure of jn Section IV that the temporal characteristics of signature

—

jitter that I have found useful is production are key to on-line signature verification. The
choice of time as a parameter for on-line signatures seems
length of polygonal (or other) also to have been influenced by the use of time as a param-

Jitter— 1 — Smoothing approximation to data eter in the relatively well-developed disciplines of speech

total sum of intersample distances recognition and speech verification [16]. However, note

two important distinctions between speech and handwritten

Note that 0< Jitter < 1. on-line signatures: 1) unlike speech, handwritten on-line
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signatures have no inherently unavoidable reason to distort G
in appearance under distortion of time, and 2) when we sign,
we implicitly aim to generate spatially consistent patterns,
and not temporally consistent, or even spatiotemporally
consistent, patterns. Recall that the primary argument in
favor of using handwritten signatures for authorization and
authentication is that their continued use would not require
us to change “the way in which we do business.” Hence,
it is probably unacceptable to request individuals to be
temporally consistent when they sign; further, it is not even
clear that most individuals could meet such a request even
if they tried.

| contend that the parameterization of any handwritten a broader window does more than just increasingly smooth
on-line curve, including on-line signatures, should be over a out noise: It also increasingly smooths out actual signature
spatial metric, rather than over a temporal metric. | suggestvariations, making it harder to detect discrepancies between
that we parametrize each handwritten on-line signature overforgeries and genuine signatures. Hence, in choosing the
its normalized arc-length—that is, over the distance traveled width of our window, we must balance the prospect of
by the pen while the pen is in contact with the writing undersmoothing the noise against the prospect of over-
surface, this distance measured as a fraction of the tOta|smoothing the signature. Typically, a reasonable choice for
distance traveled by the pen while the pen is in contact the width of the sliding window is a fraction of the length
with the writing surface. Let us denote the normalized arc- of an individual “character.” We shall discuss this choice
length of a signature by Parameterization of a curve over at greater length in Section V-I.
its arc-length is standard practice in differential geometry  Now, coming to the question of the weighting along the

36 26 -6 0 o 20 30

Fig. 7. Gaussian.

[8]. length of the window, several choices are possible. We
could, of course, weight the window uniformly along its
E. Sliding Computation Window length, but such a weighting would not best serve the

Once we have parameterized a signature over its nor-desirable goal of gradually phasing in and phasing out
malized arc-length, what characteristics of the signature OUr center of attention along the length of the signature
do we represent as functions of the signature’s normalized@S We slide the window along this length. A uniform
arc-length? The characteristics of the signature we shallWeighting could lead to relatively abrupt changes in our
represent are derived from the center of mass, the torque computed values of signature characteristics when we slide
and the moments of inertia of the signature computed over 0Ur window along the length of the signature, changes thata
a window that is sliding along the length of the signature discrete implementation of our computations might fail to
in unison with the motion of a coordinate frame. Before Capture adequately. A straightforward weighting function
we discuss each of these characteristics in sequence nexthat would allow us to phase in and phase out our center
let us spend some time on the sliding window over which ©f attention along the signature gradually is a Gaussian
we shall compute these signature characteristics. Let us callcentered at the center of the sliding window, this Gaussian
this sliding window thecomputation windowto distinguish ~ Narrow enough for it to taper off to near zero at either end
it from another sliding window that we shall discuss in the ©f the window. Recall that the Gaussian is a bell-shaped

context of the moving coordinate frame. We shall discuss function—of the type illustrated in Fig. 7—whose equation
the moving coordinate frame in Section V-I, in 1-D, ignoring a scale factor, §()\) = exp(—A?/(20?)),

Two questions that arise immediately in the context of Whereo controls the width of the Gaussian. Let us adopt a
a sliding window are: what is the window’s width, and 1-D Gaussian weighting function centered at the center of
what is the weighting along the length of the window? the sliding window here, the of this Gaussian satisfying
With regard to the window’s width, the broader we make L = 20, whereL is half the width of the sliding window.
the sliding window, the more we shall average the signal Then,'normallzmg .th.e Gagss,lan to havg a unit |nt'egral over
noise, thus increasingly suppressing the net effect of noiseth® width of the sliding window, we arrive at theindow
on our computations of signature characteristiewever, function

3To see the effect of averaging on signal noise, consider once again, as ()\) — eXP(_)‘Q/(QUQ)) —L<A< 4L
we did in Footnote 2, a discrete 1-D signalcorrupted by additive, i.i.d., +L ? - =
zero-mean noisg; with variancesZ. Say,s; = z; + n;. Then, the noise / exp(—v2/(202)) dvy
¥, w;n; in the weighted averag®; w;s; of the signal is easily seen —

to have zero mean and varianeg8 T; w?, wherew; are the weights

(all positive), =; w; = 1, and all summations are implicitly between ~ wherec ~ L/2, andg()\) = 0 outside the range-1.
i =1 and: = n [11]. That is, the variance of the noise in the weighted

average of a signal is the sum-of-squares of the individual weights times

the variance of the noise in the original signal. As all the weights are F. Center of Mass

positive, with unit sum, this sum-of-squares is at most one. In particular, — . . .

if all the weights are equal and the average is taken aveamples, then Assume the foIIowmg. The signature Is parameterlzed
this sum-of-squares is/n. over its normalized arc-lengtd, as we discussed in
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1/2 Torque T'(I)

Section V-D, the signature has a weighted windg(h) _
of span+L sliding over its length, as we discussed in Fig- 9. Torque.
Section V-E, and the signature has unit mass per unit

length. Then, the coordinates of teenter of mas®f the i a direction orthogonal to the-y signature planef” will
signature within the sliding window are point orthogonally out of the-y plane if the net torque is
A+ L counterclockwise, an@’ will point orthogonally into thee-
z(l) = / gN)z(l+A) dA 1) y plane if the net torque is clockwise. As a result, it suffices
ffL for us to consider only the following scaldf, which we
7)) = / : gyl + \) dA ) obtain by expanding the above vectBr
_ r
where(z(1), (1)) are the point coordinates along the length () = / gN) (T + A) dx(l +A)
of the signature. Fig. 8 illustrates the center of mass of a —L
curve segment. The varying coordinates of the center of —z(l+A) dy(l+ ). 3)

massz(l) andg(l), computed over a window that is sliding ) _ _ _
along the length of a signature, together provide us with a If we ignore the window functiory(A), we can interpret
robust position-dependent description of the shape of thethe torqueT’(l) here to be twice the signed area swept

signature. with respect to the origin by the portion of the signature
within the sliding window centered at positiéna positive
G. Torque value of T'(1) indicating a net counterclockwise sweep and

a negative value indicating a net clockwise sweep. Fig. 9
illustrates this physical interpretation of the torque exerted
by a planar on-line curve segment about the origin. The
varying torque,7’(l), computed over a window that is
sliding along the length of a signature, can provide us with
a robust position- and orientation-dependent description of
the shape of the signature, as we shall see next.

As we noted in the introduction, the straightforward
computation of the orientation of a curve based on the
curve’s derivatives is not robust. It is this lack of robustness
that prompted us to devise a new descriptor of shape, the
torque, which depends on the orientation of the curve—and
also on its position—but does not involve estimating the
curve’s derivatives explicitly. Is the torque, as we have
defined it, a robust descriptor of shape? The answgegs
provided that the point about which we compute the torque
is not in the immediate vicinity of the curve segment whose
torque we compute. This assertion is established easily by

The torqueT” exerted by a vectow, which is located at
positionp with respect to the point about which we measure
the torque, isI’ = v x p. Before we apply this notion of
torque to an on-line signature, note that the torque exerted
by a vector about a point depends on both the position and
the orientation of the vector; further, we can interpret the
magnitude of the torque about a point to be twice the area
swept by the vector with respect to that point.

Assume the following: the signature is parameterized
over its normalized arc-length (see Section V-D), the
signature has a weighted windayw)) of span+L sliding
over its length (see Section V-E), and the signature is
decomposed into a series of infinitesimal vectors, each
vector with magnitude equal to its length and with direction
pointing in the direction of pen motion. Then we can define
the torque exerted about the origin by the signature within
the sliding window to be

L invoking the physical interpretation we provided the torque
)= /_L gl +X)  dy(l+A)] earlier—that of twice the signed area swept by a curve
X 2+ N yl+N)] segment with respect to the point about which we compute

the torque. Given this interpretation, it is clear from Fig. 10
where(z(1), (1)) are the point coordinates along the length that our torque descriptor of shape is robust in the following
of the signature. Herelx(l + A) and dy(l + A) are the sense: a slight alteration to the shape of a curve segment
differential changes in: and y at the location(l + ) would not drastically alter the signed area swept by this
under adX change inA. Given that each of our on-line  curve segment with respect to a point as long as we ensured
signatures resides in they plane,T" here can point only  that the point was not in the immediate vicinity of the
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/ All three curves z(1) in our earlier expression far2(l)
YL O) have roughly +L
/ ® same torque /
/ about Origin

» g N[zl + A) — o] dA
" g2+ N) = 2az(l + \) + ] dX

~

®

I
—

_(l) - 2az(1) + o

™~
4

T

Origin where 22 is as defined above, ard is the z-coordinate

Fig. 10. Stability of torque. of the center of mass of the curve segment as defined
in Section V-F. Thus we see that, given the moment of
inertia of a curve segment about a line, and, in addition,

curve segment. It is, of course, possible to devise otherthe position of the center of mass of the curve segment,

robust descriptors of shape that depend on the orientatio e can compute the moment of inertia of the curve seg-

of a curve—we shall devise tWO_SUCh descriptors in the ment about any arbitrary line parallel to the original line.
next subsectlon—_but | must mention that | have found the Further, if the line about which we compute the moment
torque to be particularly useful. of inertia of a curve segment is distant from the center
of mass of the curve segment—in the expression above,
. if « is large—the value of the moment of inertia will
H. Moments of Inertia be dominated by the distance between the line and the
Assume the following: The signature is parameterized center of mass of the curve segment. As such a domination
over its normalized arc-lengtli, as we discussed in would deemphasize the shape of the curve segment in
Section V-D, the signature has a weighted windg(h) our measurement—emphasizing instead the position of
of span=L sliding over its length, as we discussed in the curve segment available througi(l),z(l))—let us
Section V-E, and the signature has unit mass per unit measure the moments of inertia of each curve segment only
length. Then thenoments of inertimbout they-axis and about lines through the center of mass of the curve segment
the z-axis, respectively, of the signature within the sliding Further, for convenience of analysis, let us position the

window are origin of our coordinate frame for all such measurements
at the center of mass of the curve segment.
+L Let us now turn our attention to the dependence of the
(1) :/ g N2 (1 + X) dA moment of inertia of a curve segment about a line on
—fL the orientation of the line. Without any loss of generality,
S 2 consider the moment of inertia of a curve segment about
vl = /_L 9N 1+ ) dA the line through the origin that is at a counterclockwise

angle# with respect to they-axis. This moment of inertia

where(z(1), y(1)) are the point coordinates along the length is readily evaluated to be the following by substituting
L)Y . . . .
of the signature. For future reference, let us also define the[x(l)—cose + y(l)sinf] for z(7) in our earlier expression

for 22(1):
second-order cross moment here @)

+L
1(,0) = / g N[zl + A) cos @ + y(I + \) sin 6] dA

+L _L

70 = [ aOall+ Nyt -+ ) dn L
-L = / gN)[@* (1 + \)cos? @
—L
The varying second-order moments(1), »2(1), andzg(l), + 2zl + Ny(l + A) cosfsin @
computed over a window that is sliding along the length of + 17 (I+ M) sin® 6] dA
a signature, when expressed in form§l) ands» (1) that we =22(1) cos® 0 + 2z7(1) cos O sin 6 + 32(1) sin®
shall derive, together provide us with a robust orientation- L
and curvature-dependent description of the shape of thewhere z2(1), y2(I), andzg(l) are as previously defined.
signature. Thus we see that, giver?, 42, andz7 for a curve segment
Before we proceed to derive robust combinations of in any coordinate frame, we can compute the moment of
x2(1), »2(1), and TH(1), let us examine, in order, the inertia of the curve segment about any arbitrarily oriented
dependence of the moment of inertia of a curve segmentline through the origin of the coordinate frame. This result
about a line on the position and the orientation of the line. is independent of the position of the coordinate frame’s
Without any loss of generality, consider first the moment origin, which we have chosen to be at the center of mass

of inertia of a curve segment about the line= «, which of the curve segment. o
is parallel to they-axis. This moment of inertia is readily ~ Continuing our search for robust combinationsa8{i),
evaluated to be the following by substitutifig(!) — «] for y2(1), andzy(l), let us visualize the variation ovér under
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constantl, of the moment of inertid (I, #) above. Toward r(6) = 1/ N Moment of Inertia 1(0)
this end, let us first puk(, #) = 1/r%(l, §) in the expression
above, and then examine the polar plotrofs a function
of 6. Making this substitution, we get

Curvature
Ellipse

1/r%(0) = 22 cos®  + 2Ty cos Bsinf + y2 sin’ 4

o

where we have not shown the dependence?of;?, 77, and
r(6) onl explicitly, which we have fixed here. Converting
the polar coordinate&-, ) in this equation to the Cartesian ¥
coordinategry,, r,,) via the substitutions;, (#) = »(6) cos
and r,(6) = r(f)sinf, we get the following quadratic

equation inr;, andr,: Center of Mass

223 (0) + 2Ty (0)7,(0) + y2r2(0) = 1. (=), 3)
Thus we see that the polar plot of as a function off,
is a conic section. Let us now establish that this conic o
section is an ellipse centered at the origin. Toward this Origin
goal, consider the polar plot df!, #) againstd, for a fixed Fig. 11. Curvature ellipse.
I. Then, asI(l, ) is the moment of inertia of a fixed curve
segment, we can deduce tiét, ) is symmetric about the
origin, and further, thaf(/,#) can be zero at most about
a single straight line through the origin—a line to which
the curve segment must be confined. Hengé), which
is the inverse square root d@f!,8) for a fixedl, must be
symmetric about the origin and can be infinite only along
a single straight line through the origin. It follows that the
polar plot ofr(#) is an ellipse centered at the origin, where
we are including as an ellipse the degenerate case of a pai e S ) ;
of infinite parallel straight lines positioned symmetrically segment, this onen_tatlon is along the straight-line ;egment.
about the origin, such a degeneracy occurring whenever a-€t US NOW superimpose our,-r, and z-y coordinate
curve segment lies along a single straight line through the Tames—the former, the frame in which we describe the
origin. curvatu_re elll_pse of a curve segment, and the I_atter_, the
Thus we have reduced the problem of describing all frame in which we measure the moments of inertia of
possible moments of inertia of a curve segment about linesat curve segmentrurther, let us denote by(/) the

through the center of mass of the curve segment to thecognterclpckwise angle with rgspect to theaxis of the
problem of describing an ellipse that is centered at the Maor axis of the curvature ellipse of the curve segment

origin of a coordinate frame. Let us call this ellipse—which SPanned by the sliding window centered at positiohhen,

is a polar plot of the inverse square root of the moment of 2S¢ IS Simply thed that minimizes our earlier expression
inertia of a curve segment about a straight line through the 0" £(1; #), we can determing by solvingdI(l,¢)/0¢ = 0
center of mass of the curve segment, as a function of the©r ¢- In doing so, on simplification, we get

magnitude of the inverse square root of theaximum

moment of inertia of the curve segment about lines through
the center of mass of the curve segment. If the major and
minor axes of the curvature ellipse of a curve segment
are unequal, then the orientation of the major axis of the
curvature ellipse is the orientation through the center of
mass of the curve segment about which the moment of
linertia of the curve segment is minimum; for a straight-line

orientation of the straight line—theurvature ellipseof the . 2z7(1)
curve segmerft.Our motivation for this name will soon 2¢(1) = tan [m}
become apparent. Fig. 11 illustrates the curvature ellipse of 4

a curve segment. Note that this expression faF provides us with the coun-
The curvature ellipse of a curve segment is specified terclockwise angles, with respect to theaxis, of both
completely by the ellipse’s major axis, its minor axis, and the major and minor axes of the curvature ellipse; these
its orientation. Themajor axis of the curvature ellipse axes are, of course, 9Gpart. Substitution for into the
has twice the magnitude of the inverse square root of the expression for/(l,#) quickly determines which is which,
minimummoment of inertia of the curve segment about also providing the magnitudes of the semi-major and semi-
lines through the center of mass of the curve segment, minor axes of the curvature ellipse.
and theminor axis of the curvature ellipse has twice the  Our discussion of the curvature ellipse to this point would
suggest that, to compare the shapes of two curve segments,
4Those of you who are familiar with differential geometry [8] will ggh Id P d P th d ori gt fi
notice that the curvature ellipse of a curve segment is analogous to Dupin's W€ SNou measur? and compare the axes and orientations
indicatrix of a surface at an elliptic surface point. Dupin’s indicatrix of ~Of the curvature ellipses of the two curve segments. How-
a surface at any point is a polar plot of the inverse square root of the gyer it turns out that such direct measurements of curvature
absolute normal curvature of the surface at that point, as a function of the .. . .
ellipses are not robust, this lack of robustness defeating our

direction (tangent to the surface at the point) in which we compute the X : > i
curvature. purpose in measuring the moments of inertia—namely, to
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devise robust descriptors of shape. Hence, we need to adopis, that are invariant under uniform magnification or reduc-

a different tack. tion of the curve segment. Let us, for brevity, calland s,
Now, it is clear that if we rotate, about its origin, the curvature-ellipse measure¥/e measures(l) £ bsin 2¢(1),

z-y coordinate frame in which we measure the moments instead ofs({) andsin 2¢(!) individually, because(!) and

of inertia of a curve segment, the curvature ellipse of the sin2¢(l) are too ambiguous and unreliable individually.

curve segment will simply rotate in the,-r, coordinate For instance () is zero for every straight-line segment,

frame without changing its shape. Then, from the well- and sin 2¢(l) tends to become unreliable as we flex a

known properties of conics under rotation, we can conclude straight-line segment toward a complete circle. In the

that the following combinations of the coefficients of the measurementss(l)+bsin 2¢(1), each component mitigates

curvature ellipse are invariant under rotation of the the ambiguity/unreliability of the other. My choices of

y axes: [z2(1) + y2(1)] and [z2(D)y2(l) — zy*(1)]. (For a s1(1) and sy(l) are prompted in large part by my finding

description of these properties of a conic, see [17, art. 157]; them to be more reliable and useful in practice than other

you can also verify the rotational invariance of the two pairs of shape measures based on the curvature ellipse |

terms by directly substituting into each of the two terms investigated.

the expansions far2, 42, andzy under rotation of the:-y

axes.) Let us now combine the two rotationally invariant 1. Moving Coordinate Frame and Saturation

terms as follows: We now have a complete list of the signature charac-
2(Dy2(1) — 752(0) teristics we shall represent as functions of .th(_e normalized
s(l) = length [ of the signature. These characteristics, each of

[z2(1) +* (D : : e
which we shall compute over a window under variation
It is easy to see that = 0 for every straight-line segment, of this window's position along the length of the signature,
and thats = 1/4 for every circle. We can further establish arez, %, 7', s;, and s,, as defined in (1)—(5). Of these
quickly that these two values efactually bounds. First, it five characteristics, the center-of-mass coordinatesnd

is well known that the combinatiojr2(7)y2(1) —zy>(1)] of 7 and the torquel’ exerted about the origin depend on

the coefficients of an ellipse is nonnegative; hencg, 0. the location of the origin of the coordinate frame in
Next, it is clear that which we compute the signature characteristics, whereas

— T2 L A2 the curvature-ellipse measures and s; do not depend
1/4—s(l) = [2*(D) _ ( )]_+ 47y () >0. on this location. On the other hand, only the tordhef

Afz(1) +y*(D)? the five signature characteristics does not depend on the

Hences < 1/4. Thus we have established that< s < orientation of the axes of the coordinate frame in which we
1/4. compute the characteristics. Given this dependence of our
Now, we know from our earlier discussion that, barring Signature characteristics on the location and orientation of
the degenerate case of a circle, the orientaijorof a our coordinate frame, we are faced with deciding how to
curvature ellipse satisfies choose our coordinate frame as our computation window

L slides along the length of the signature.

sin 2¢(1) = 2zy(l) ) With regard to the choice of a coqrdinate frame for our

\/[P(l) — 2(D]? + 4z2(1) computations of signature characteristics, one possibility is

to use one or a few fixed globally computed coordinate
Then let us define the following two measures of a curve frames for all our computations; we could, for instance, use
segment’s shape derived from the curve segment’s curva-a single globally computed coordinate frame that has its ori-

ture ellipse: gin at the overall center of mass of the signature and its axes
aligned with the global axes of maximum and minimum
sil) = L) bsin 2¢(1) inertia of the signature—these axes of inertia being unique,
z3(l )y () — =) barring degenerate cases. Another possibility with regard
[22(1) +y2(D)]? to the choice of a coordinate frame for our computations
277(1) of signature characteristics is to use a coordinate frame
+b—= — (4) whose position—and perhaps orientation—is computed lo-
\/[372( ) =y (D] +4z52(1) cally along the signature and evolves as the computation
s2(1) = as(l) — bsin2¢(1) window slides along the length of the signature. The latter
202 — 72(0) alternative is more attractive than the former as the global
=0—= > computation of a coordinate frame has the severe draw-
[22() + (ll back that it globalizes the effect of isolated discrepancies
—b 2zy(D) (5) between signatures on their comparison. One example of
\/[p(l) _ ?(1)]2 + dz72(1) isolated discrepancies between two signatures is a disparity
in the sizes of corresponding gaps in the two signatures. It
where o and b are positive weights. Togethes; (1) and is important that we strive to localize the effects of isolated

s2(1) provide us with measures of the curvature and orienta- discrepancies between signatures on their comparison as
tion of a curve segment that are independent of scale—thatsuch discrepancies are often produced inadvertently by
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genuine signers. Such localization could serve to distinguish Computation
isolated discrepancies from distributed discrepancies in our ~ Window
comparisons of signatures, a distinction that is important

because systematic distributed discrepancies are typically

more indicative of a forgery than are isolated discrepancies.

As we can localize the effects of isolated discrepancies

between signatures on their comparisons only by adoptingFig. 12. Sliding computation and coordinate-frame windows.
a moving coordinate frame that is computed locally, let us

adopt such a frame of the type we shall discuss next. As Nproader coordinate-frame window provides greater stability

aside, a moving cqqrgimate fra”?e that is computed locally to the coordinate frame, but does not sacrifice the localness
opens up the possibility of applying state-based approaches

" A of our measurements to the same extent as would a similar
to recognition and verification, one such approach based on

. . . -~ increase in the width of the sliding computation window.
hidden Markov models being popular in speech recognition . .
[16]. As far as the displacement between the two windows

Let us attach our coordinate frame, which we use for our 9°¢% the greater t.his displacement, the wider shall be the
computations of signature characteristics over the sliding impact of a local discrepancy between any two signatures,

computation window, to the center of mass of the signature sveir:]tual:ynrigakrtgvozrtimﬁasirl:rtimernfstir\:onrobil:istnby ]:r::]ro-
computed over another window that too is sliding along ucing signiicant variations € relative positions of the

the length of the signature. However, for at least two computation window and its coordinate frame even across
reasons, let us align the axes of this moving coordinate genuine signatures. On the other hand, the smaller this

frame permanently with the global axes of maximum and displacement, dt_he less drpbgst s_:hallvbg c::r measurementblof
minimum inertia, rather than compute these axes locally. torque, as we discussed In Section V-G. Again, a reasonable

The first reason for aligning our coordinate-frame axes choice for the displacement between the two windows is &

permanently with globally computed axes, rather than com- fraction of the !ength of an |qd|V|dan “character.” B
puting these axes locally, is one of robustness: Compared NOW. assuming that a typical signature has ten *char-
to the computation of the coordinate frame’s origin locally, 2cters,” a fraction of the length of a “character” is a
the computation of the coordinate frame’s axes locally is f€W hundredths of the complete length of the signature.
not robust. The second reason for aligning our coordinate- UNder this assumption, we could fix the widths of our
frame axes permanently with globally computed axes is windows, and of the displacement between them, to be
that, whereas, once we have begun writing, where we write 88Ch @ few hundredths of the complete length of the
next tends to depend on where we wrote last, the baselineSignature. Of course, a better strategy might be to analyze

and slant of our writing tends to be determined relatively the overall complexity of the shape of each signature
globally. that we model—by determining how many “wiggles” it

Now, we have two windows that are sliding over the has—and then base our widths and displacement on this

length of the signature—one window over which we com- Complexity. Alternately, we could try out a variety of
pute the origin of our moving coordinate frame, and the widths and displacements when we model a signature, to
other window over which we measure the center of mass, discover, and subsequently use, the smallest widths and
the torque, and the moments of inertia of the signature. Let largest displacement that provide robust measurements.
us call the window over which we compute the origin of [N our discussion to this point, we have assumed implic-
our moving coordinate frame tlwordinate-frame window itly that both our sliding windows, the computation window
we earlier named the window over which we compute and the coordinate-frame window, span continuous curve
the signature characteristics the computation window. As segments. However, given that in our parameterization of
illustrated in Fig. 12, both windows slide in unison over the signature over the normalized distance traveled along
the length of the signature with a fixed—but, in general, the signature with pen down, we did not provide any special
nonzero—displacement between their centers. Further, thetreatment to instances of pen up, our sliding windows will,
two windows have fixed—Dbut, in general, unequal—widths. on occasion, span gaps in curves, these gaps tending to
Now, just as we weighted the computation window in be quite variable in size across multiple instances of the
Section V-E by a Gaussian centered over the window, let us signature, and, often, inadvertent. Gaps along the length
weight the coordinate-frame window by its own Gaussian of a signature, in themselves, do not pose any conceptual
centered over the window. hurdle to the motion of our sliding windows: As illustrated
As already indicated in Section V-E, a reasonable choice in Fig. 13, all we have to do whenever either of our
for the width of the computation window is a fraction sliding windows spans a gap is split the window, with
of the length of an individual “character.” If this width its (Gaussian) weighting function, across the gap in the
is too large, our measurements become nonlocal, and ifcurve segment. Although such window splitting suffices
it is too small, our measurements become nonrobust. Theto characterize a signature continuously across gaps in
same reasoning applies to the width of the coordinate-framethe signature, it is not sufficient for our purposes: Our
window, except here we can get away by making the width measurements of signature characteristics in the vicinity of
a factor larger than the width of the computation window; a gaps in a signature could exhibit unusually large magnitudes

Window
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Fig. 13. Sliding window across gap in curve.

Fig. 14. Saturation function.
when the gaps are large, these large magnitudes posing
the threat of disproportionately influencing comparisons of
characteristic functions to their models.

In particular, whenever our coordinate-frame window is
largely on one side of a large gap, and our computation
window is largely on the other side of the gap, the center-
of-mass coordinates and the torque exerted about the origi
could all exhibit unusually large magnitudes. Recall, how-
ever, that our curvature-ellipse measures are independen
of the position of the coordinate frame. Further, even
when individual moments of inertia assume unusually large
magnitudes owing to the computation window spanning a
large gap, as we established in Section V-H, our curvature-
ellipse measures remain well bounded. Note, however, that
when our computation window does span a large gap, our
curvature-ellipse measures will tend to have values similar
to those for a straight-line segment spanning the large gap.

As already indicated, unusually large magnitudes of the

normalized length of the signature, the consistency of the
characteristic across multiple instances of the signature.
Doing so, for every characteristic function of a signature,
we shall have @onsistency functiotihat provides a measure
of the consistency of the characteristic function along its
nIength. A natural choice for the consistency function of a
haracteristic function is the inverse standard deviation of
he characteristic function at each point along its length. Let
us adopt this choice. Once we have a consistency function
to accompany the prototype of a characteristic function,
whenever we compare a characteristic function to this
prototype, we shall weight each of the two functions along
its length by the consistency function of the prototype.
The question now is, how do we compare a characteristic
function to its prototype? or equivalently, what is our
measure of error in comparing a characteristic function

X {o its prototype? Of the several error measures that are
center-of-mass coordinates and the torque exerted abou : . : .
possible—for instance, the integral of the difference of

the origin pose the threat of disproportionately influencin .
gin p brop y 9 squares—I have chosen { cross correlatiol), where we

comparisons of the center-of-mass and torque characteristiccom ute thecross correlationbetween the characteristic
functions to their models. We can circumvent this threat P

caused by large spatial gaps in the pen-down trajectories{)unfr?on ?1”? tltsn prc;t()r;[yﬁenw?llﬁ Werlgthttlng e%c;hift;?célon
of signatures bysaturatingour measurements of the two y the consistency function ot the prototype. eighte

center-of-mass coordinates and the torque exerted about thé: raits'ozorrg!aﬁ?en dO];) tv;/r?e ffu r:?tl(()) ns lf (l')s ind dZ]E'lrz"t'gr?Ch
origin, employing, in each case, the followirsgturation unction weig y unctiow (), is by initi

function /wQ(l)f(l)h(l) dl

\/ / w2(1) £2(1) dl / w2()h2(1) i

If f(I) is a characteristic function here artd!) is this
characteristic function’s prototype, and(!) is the proto-

TMunsat Cross Correlatior=

Mear = M, tanh | ———
M,

where my,s,¢ IS the original unsaturated measurement,

mear 1S the same measurement after saturation, and

me—Wwhich is positive and chosen individually for ) . :
: o . ype’s consistency function, then for ug(l), h(l), and
each signature characteristic—determines the degree Of:u(l) will be related as followsh(l) = E[f()] anduw(l) =

saturation. This saturation function is illustrated in Fig. 14. 91\ 1

1/(E[(f() = E[f( /2,
When |mupsat| <€ |m0], [Msat] = |[Munsat|, bUt when /LEIT(D) LFOY°])
[Munsat] > Mo, [Msas| = |mo|, the signs ofmg,, and
Munsat always being the same.

When we compute the various individual weighted cross
correlations between a signature’s characteristic functions
and their models, we will allow all the characteristic func-
tions of the signature—or, equivalently, all the models of
J. Weighted Cross Correlation and Warping these functions—tavarp simultaneously along their lengths

No signer is uniformly consistent along the entire length such that an overall error measure is minimized. This
of the signer’s signature. Further, the consistency of a simultaneous warping of the individual functions must, of
signer at a particular location along a signature dependscourse, be constrained to be identical at identical abscissae
on the signature characteristic we examine. As a result, along the lengths of all the functions because the abscissa of
whenever we measure a characteristic of a signature alongeach function is the same length paraméterhose each
its length, we must also measure, as a function of the specific value corresponds to a specific physical location
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Fig. 15. Example illustrating characteristic functions of signatures.

along the signature. Warping allows us to accommodate five characteristic functions of the signatu@omparison
instances of signatures that deviate from one another withcomputes a net measure of error between the signature
respect to the fractional lengths of their various parts, such characteristics and their prototypes.
deviations being unavoidable even when all the signatures
are produced by the original signer.

Time warping is common in speech recognition [16], and 1) Fit a polygon to the ordered set of samples of the on-

A. Normalization

| have also seen it previously in signature verification [18]. line signature, and keep a count of the total number of

However, | have not encountered length warping in the pen-down samples, a number proportional to the total

signature-verification literature. Length warping, of course, pen-down time under uniform temporal sampling.

assumes parameterization over the signature’s length, which 2) Compute the jitter (Section V-B). There is no further

I have not seen either in the signature-verification literature. need for the original samples.

Neither have | previously encountered the notion of the 3) Compute the global axes of maximum and minimum

weighted cross correlation as we have discussed here. inertia of the signature through the signature’s global
center of mass, and then rotate the signature to

VI. ALGORITHM normalize the orientation of these axes.

As | indicated in the introduction, not everyone produces 4) Compute the aspect (Section V-C) of the signature
consistently shaped signatures. A signature is particularly from the fitted polygon, and then scale the signa-
likely to be shaped inconsistently when it is produced ballis- ture either vertically or horizontally to normalize its
tically, rather than deliberately (see Section IV). Whereas, aspect.

given sufficient motivation—perhaps, simply the conve- g Description

nience of not having to sign more than once—many signers

might produce consistent shapes, some signers might even 1) Parametrize the signature over its lengBection V-
then be unable to do so. It is for this reason that we cannot D), measured along the fitted and normalized polygon
rely on the local shapes of signatures alone for signature as a fraction of the total length.

verification, even though such a reliance is preferable when 2) Compute a moving coordinate frame (Section V-I).
possible. Hence, we must invoke two models for each 3) In the moving coordinate frame, measure, as a func-
signature: one local and purely shape based, and the other tion of {, the following signature characteristics over

global and based on both shape and time. a sliding computation window (Section V-E): the

In particular, my algorithm has three distinct compo- coordinatesz(l) and y(I) of the center of mass
nents—normalization, description, and comparison—each (Section V-F), the torqué&’(l) exerted about the ori-
of which | outline broadly nextNormalizationmakes the gin (Section V-G), and the curvature-ellipse measures
algorithm largely independent of the orientation and aspect s1(1) andsz (1) (Section V-H). All these computations
of a signature; the algorithm is inherently independent of the can be conveniently performed over a discriethat
position and size of a signaturBescriptiongenerates the is uniformly sampled.

230 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 2, FEBRUARY 1997



T s,(1) s,(1)
j/\/wvwm r"W‘H/‘QA K V\’m WU“V‘ MW - | fvwf Wﬁ\y\wfm‘

r Y \r‘

[ —> [—> ]—>

Fig. 15. (Continued.)Example illustrating characteristic functions of signatures.

4)

Saturate the characteristic functions (Section V-I) and between the signature being verified and its model

normalize each function to have a zero mean. and whose comparison against a threshold determines
whether we accept or reject the signature being ver-
ified.

C. Comparison

1

2)

3)

4)

5)

Simultaneously warp the five characteristic functions VII-  EXAMPLE

to maximize the sum of the weighted cross correlation | now illustrate the algorithm we discussed in
of each function with respect to its model (Section V- Section VI—specifically, the nature of the characteristic
J), and retain a measure of the total warping per- functions that lie at the core of this algorithm—through
formed. an example. This pedagogically contrived example, shown
Compute the error between each characteristic in Fig. 15, has four signatures, all shown in the left-most
function and its model by subtracting from 1.0 the column: Proceeding from top to bottom, the first signature
weighted cross correlation between the two functions; is a typical genuine, the second signature has a loop
then normalize each such error by first subtracting missing from its “w,” the third signature has an extra
its mean from it and then dividing the resultant loop in its “w,” and the fourth signature is written with a
by the error’'s standard deviation; finally, bias each slant. Shown alongside each signature, in a row, are the
normalized error and then threshold it so as to make characteristic functions of that signature: Proceeding from
it 0.0 if it is negative. left to right, shown in sequence ax#l), 5(l), T(1), s1(1),
Compute the root mean square (rms) (Section V-A) of and sz (), with the result of the weighted cross correlation
the individual biased and thresholded errors between of each characteristic function with its prototype indicated
each of the five characteristic functions and their at the lower right of the function. The prototype of each
models (C-2) to arrive at theet local error characteristic function is shown immediately above the
Compute the rms (Section V-A) of the differences four corresponding characteristic functions of the four
between the following four global entities and their signatures, and immediately above each prototype is shown
means, after first normalizing each difference by the the consistency function of the signature characteristic,

entity’s standard deviation, to arrive at thet global this function bounded below by zero.
error: jitter (A-2), aspect (A-4), warping (C-1), and As is clear from the figure, local deviations in the shape of
the total number of pen-down samples (A-1). a signature from its typical genuine instance lead to locally

Compute the weighted and biased harmonic meanidentifiable deviations in the characteristic functions from
(Section V-A) of the net local error (C-3) and the net their prototypes, and systematic deviations in the shape
global error (C-4)—the weights and biases reflecting of a signature from its typical genuine instance lead to
the overall spatial consistency of the signature across distributed deviations in the characteristic functions from
its multiple instances—to arrive at theet error, their prototypes. In particular, note that the characteristic
which provides us a measure of the discrepancy functions of the two signatures with the extra and missing

NALWA: AUTOMATIC ON-LINE SIGNATURE VERIFICATION 231



loop in “w” each differ from its prototype roughly within

the interval of! between 0.5 and 0.6; because of the ) _
discrepancy between the shapes of the signatures, the 1) This database was created using an NCR 5990 LCD
characteristic functions of these two signatures are neither
aligned with each other along tthexis, nor are they aligned
with their prototypes (until we warp thkeaxis).

VIII.

D ATABASE RESULTS

The three databases on which | tested my implementation
of the algorithm we discussed in Section VI were compiled
by Bell Laboratories and are proprietary. Let us call these
database®DB1, DB2, and DB3, calling their unionDB.

Before we examine the various results on these databases,

let us spend a few moments on their backgrounds.

A. Database 1 (DB1)

1

2)

3)

4)

232

This database was created using a Bell Laboratories
in-house developmental LCD writing tablet with a
tethered pen. The spatial resolution of the tablet
was uniformly about 0.08 mm, or about 300 dots/in,
along both the horizontal and vertical directions, and
the temporal sampling rate of the tablet was about
300 samples/s. Although this tablet provided the pen
pressure in addition to the pen position, the pen
pressure was used solely to determine whether the
pen was in contact with the writing surface.

The total number of genuine signatures was 904 from
59 different signers. Fifteen signers were women and
eight were left handed, and all of these signers were
Bell Laboratories employees, ranging in age from 19
to 66. After first being allowed to get accustomed
to using the writing tablet, each signer was asked to
provide ten genuine signatures in a first session. At
the end of each signature, each signer was allowed to
delete and redo the signature if, in the opinion of the
signer, the signature was not “OK.” After an interval
of at least a week, each genuine signer was called
back for a second session to provide either five more,
or, in four cases, nine or ten more, genuine signatures.
The total number of forgeries was 325, with either
five or ten forgery attempts for each of the 59 different
genuine signatures. These forgeries were performed
by 32 willing participants from among those who
provided the genuine signatures. Each forger was
shown copies of the genuine signatures to be forged
and allowed to forge one or more of them either five
times, or, in two cases, ten times after first being
allowed to practice the signature. Cash rewards were
used to motivate the forgers.

There were actually 60 genuine signers who partic-
ipated in the creation of the database, but all the
signatures related to one signer were subsequently
removed from the database when it was realized that |
this signer had expanded his first initial, which he had |

B. Database 2 (DB2)

writing tablet with a tethered pen. The spatial reso-
lution of the tablet was uniformly about 0.08 mm,

or about 300 dots/in, along both the horizontal and
vertical directions, and the temporal sampling rate of
the tablet was uniformly 200 samples/s. Although this
tablet provided the pen position not only when the
pen was touching the writing surface, but also when
the pen was in the vicinity of this surface, the pen-up
information was not used.

2) The total number of genuine signatures was 982 from
102 different signers. These signers were all from Bell
Laboratories and NCR, and all signatures from each
signer were collected in a single session outside a
cafeteria.

3) The total number of forgeries was 401, with these
forgeries collected in the same sessions as the genuine
signatures. Each forger was shown a copy of the
signature to be forged on a computer screen, and the
effort made by a forger to reproduce the displayed sig-
nature varied from negligible to substantial, including
prior practice.

4) There were originally many more genuine signa-
tures and forgeries in the database, but subsequently
only those genuine signatures were retained that had
roughly 80-120% of the strokes of their typical
specimen, and only those forgeries were retained
that were attempts to replicate the shape of the
genuine signature and that had roughly 80-120% of
the strokes of the genuine signature. This pruning of
the database was not a deliberate attempt to rid it of
its so-called goats, which we discussed in Section IV,
but rather an attempt to ensure that estimates of
performance subsequently achieved on the database
would be more realistic than they might otherwise
be. Further, this pruning was supervised not by re-
searchers developing signature-verification software,
but rather by NCR, which manufactured the writing
tablets used and was seeking to bundle such software
with these tablets.

C. Database 3 (DB3)

1) The same as for DB2.

2) The total number of genuine signatures was 790 from
43 different signers. These signers were all from
Wright State University, and all signatures from each
signer were collected in a single session.

3) The total number of forgeries was 424, these forgeries
collected in the same fashion as for DB2.

4) The same as for DB2.

The details | have provided for each database are what
have been able to glean from their various accounts.
was not a participant in the creation of any of the

used in his first set of signatures, into its full form in databases. From accounts of the creation of these databases,
the second set. it seems safe to conclude that DB1 was created in the most
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Fig. 16. Error tradeoff curves when modeling with first six gen- Fig. 17. Error tradeoff curves when modeling with first five
uine signatures. genuine signatures.
carefully controlled fashion, and that DB3 was created in 24T
the least carefully controlled fashion. Owing to the varying
circumstances of their creation, | shall report not only the
error tradeoff curve (see Section lll) for the three databases 18 }
collectively, but also the error tradeoff curves for the three i
databases individually. I
In Fig. 16, | show the error tradeoff curves for the
three databases individually and collectively, labeling the T 12 ' |
last curve DB. Each curve was generated using the first >~ i
six genuine signatures of each signer to build a model &
of the signer’s signature, this model requiring about 600 §
bytes of storage after some straightforward compression. o §4—
Under these circumstances, DB1 provides a test set of 550 © .
genuines from 59 signers in addition to 325 forgeries, DB2
provides a test set of 370 genuines from 102 signers in 2
addition to 401 forgeries, and DB3 provides a test set of 0 :
532 genuines from 43 signers in addition to 424 forgeries. 0 2 4 6 12 18 24
For the curve labeled DB in Fig. 16, then, the total number False Rejects (%) ———>

of genuines tested is 1452 from 204 signers, and the total , o
number of .forgerie.s test.ed is 1150. ' . g(legnu1|r?e sI?g;:]Oartut:sg.EOﬁ curves when modeling with first four

| used six genuine signatures to build each signature
model because, at least on these databases, as | increased
the number of signatures for modeling up to six, there were 3%, 2%, and 5%, respectively. The error tradeoff curves
tangible, albeit increasingly smaller, improvements in the for DB2 are clearly the best, perhaps because the forgeries
various error tradeoff curves. Figs. 17 and 18 illustrate the were not well motivated, and the error tradeoff curves
error tradeoff curves when, instead of the first six signa- for DB3 are clearly the worst, perhaps because not only
tures, we use the first five and four signatures, respectively, were the forgeries not well motivated, but also because the
of each signer to model the signer’'s signature. On theseacquisition of genuine signatures was largely unsupervised
databases, | did not see a tangible improvement in the errorand from college students, who are likely to have relatively
tradeoff curves as | increased the number of signatures forunpracticed signatures. Note here also that the arrangement
modeling up from six; also, the test set of genuines becameused for the creation of forgeries in DB2 and DB3 is not
increasingly smaller, which made the results less reliable. ideal for successful forgery as any forger who tries to

It is clear from the various error tradeoff curves that replicate the shape of a signature displayed on a computer
each such curve depends highly on the nature of the screen without first memorizing the shape of this signature,
database on which the curve was produced. For instancewould need to pause on several occasions to look up at the
in Fig. 16, the equal-error rates for DB1-DB3 are about displayed signature for guidance. | am speculating.
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The equal-error rate of my implementation’s net error

Let us now examine in turn the sets of signatures in

tradeoff curve in Fig. 16 is about 3.6%. An operating point Fig. 19, whose originals are produced by 12 different
that | consider reasonable for many credit card transactionsindividuals.

is at about 1% false accepts, which corresponds to about
7% false rejects on the net error tradeoff curve in Fig. 16.
At this operating point, statistically, approximately one out
of every 100 forgeries will be accepted and approximately
one out of every 14 genuine signatures will be rejected—an
instance of rejection requiring either a fresh signature, or
some other actionin practice, of course, the point on the
error tradeoff curve at which we operate in a particular
situation must depend on the relative penalties we would
incur for committing the two types of errors in that situation
For instance, a substantial potential financial loss from
accepting a forgery would favor an operating point with a
low false-accept rate, whereas a high likelihood of customer
annoyance from rejecting a genuine signature provided by
the customer, such annoyance posing the risk of loosing
the customer, would favor an operating point with a low
false-reject rate. Perhaps, then, the signature-verification
system should provide a confidence measure—say, in the
range £100—rather than gesor a no, leaving the final
decision of whether to accept a signature to the system
operator.

As | indicated in Section lll, it is not just the per-
centage of false rejects that is important, but also the
visual similarity of the false rejects to genuine signatures.
Because of the shape-based nature of my scheme, we would
expect its false rejects to be visually dissimilar to genuine
signatures. This expectation seems to be largely met in
Fig. 19, where | show each of the false accepts (forgeries
accepted) and false rejects (genuines rejected) at the equal-
error point of the error tradeoff curve for DB1 in Fig. 16.

In Fig. 19, for each misclassified signature, | show first
(topmost) the original that was determined by the system
to be most representative of the six originals used to model
the signature. Immediately below this particular original, |
show two additional originals if, in my judgment, these
additional originals help us understand why a particular
subsequent signature was either falsely accepted or falsely
rejected. Below each set of originals | show the one or more
misclassified signatures pertinent to that set, providing to
the lower right of each misclassified signature, the final
(scaled) numerical error put out by my implementation.
The larger this error, the lower the degree of match of
the signature to the six original signatures. The threshold
demarcating genuines from forgeries at the equal-error point
for DB1 in Fig. 16 is 0.59. At this threshold, the total
number of forgeries accepted is ten, and the total number
of genuines rejected is 15, all shown in Fig. 19, each of
these numbers roughly 3% of the total number of forgeries
and genuines available for testing in DB1, respectively.

Note, here, that the equal-error point is unlikely to be our

 Signer 4 has a very simple, but inconsistent, signature,
and although the first two forgeries shown accepted
each seem to resemble at least one original closely,
the low error for the last forgery accepted surprises
me. At a threshold of 0.50, however, this last forgery
would be rejected.

» Signer 6 has a genuine rejected because of this gen-
uine’s apparent visual dissimilarity to its original.

» Signer 7 has a genuine rejected because of this gen-
uine’s apparent visual dissimilarity to its original.

» Signer 14 seems to have an inconsistent signature,
especially around the “D” and the “B.” As a result,
it has a forgery accepted, but with an error greater
than 0.50.

» Signer 18 has a genuine rejected because of this
genuine’s apparent visual dissimilarity to its original.

» Signer 19 has a signature that, on close visual ex-
amination, is revealed to be relatively consistent only
around “Ell,” these first three characters then greatly
influencing the final error. All the genuines rejected
are rejected at least in part because of the insertion of
a middle initial in each of them, and from among the
forgeries accepted, the second appears to be the most
visually similar to the originals and it alone has an
error less than 0.50.

» Signer 33 has two genuines rejected, apparently be-
cause of the dissimilarity of the first word of these
genuines to the first word of their originals.

» Signer 38 has a forgery accepted that looks quite
similar to the original, at least at first glance, but this
acceptance is with an error greater than 0.50.

» Signer 40 has a genuine rejected because of this
genuine’s apparent visual dissimilarity to its original.
This signer also has a forgery accepted because of this
forgery’s apparent visual similarity to the original, but
this acceptance is with an error greater than 0.50.

» Signer 46 has two genuines rejected, apparently be-
cause of the dissimilarity of the shape, size, and
position of the “S” and the shape of the “y” in each
rejected genuine with respect to its originals. This
variability in the “S” and the “y” could, of course,
be weighted out if we had originals from this signer
exhibiting this variability.

» Signer 48 has a genuine rejected because of this

genuine’s apparent visual dissimilarity to its original.
Signer 54 has three genuines rejected because of the
obvious discrepancies between the last word of these
genuines and their original. Notice how well the errors
here correlate with the apparent visual discrepancies.

operating point in practice. In particular, | have been using a | indicated in Section IV that the performance of a veri-

threshold of 0.50, rather than 0.59, to distinguish between fication system on a database is typically limited by the
genuines and forgeries in demonstrations. This thresholddatabase’s goats, which are generally few in nhumber and
corresponds to about 7% false rejects and 1% false acceptsnight vary greatly from one database to another. For DB1,

on the error tradeoff curve for DB in Fig. 16.

234

at the equal-error point, notice that Signers 4, 19, and
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Fig. 19. Errors at the equal-error point for database DB1 when modeling with first six genuine

signatures.

54—ijust three out of the 59 signers in all—had their about 85%, and for 21 of the 53 total genuines rejected,
signatures account for seven of the ten forgeries acceptedabout 40%; in arriving at these numbers, | included every
and for six of the 15 genuines rejected. At the equal-error signer whose genuines and forgeries led to three or more

point for the combined complete database, DB, it turns out errors.

that the signatures of ten signers out of 204 signers in all,
about 5%, account for 35 of the 41 total forgeries accepted, point.
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on site—with little delay and at low cost. Automatic on-site
verification of handwritten signatures is now feasible for
two reasons: 1) high-fidelity digital models of signatures,
each such model requiring at least of the order of a
few hundred bytes of storagecan now be stored on
smart cards, and 2) the computation required to verify
a signature, given the signature’s model, can now easily
be accomplished in real time on a relatively inexpensive
personal computer. Amart card although often designed

to look and feel just like an ordinary credit card, offers
secure internal data storage unlike currently used credit
cards, whose storage is restricted to the magnetic stripe at
the back of the card. As a result, whereas ordinary currently
used credit cards typically provide only a few hundred bytes
of storage, smart cards provide at least several kilobytes

of storage. Data transfer to and from a smart card is
Fig. 20. All signatures pertinent to one signer from database accomplished through a smart-card reader.

DBI. An alternative to signature verification that is completely
on site is to store all the signature models in a central

signatures pertinent to one particular signer from DB1. In database, and then perhaps transmit each signature to be
the figure, on the left on top are the first six signatures Verified to the site of this database to perform the ver-
provided by this signer, these signatures used to create dfication there; such verification could be performed, for
model of the signer’s signature. Once again, the topmostinstance, in conjunction with a credit-worthiness check.
signature from among the six is the one that was determinedStoring the signature models in a central database has
to be most representative of the six originals. | have shown the disadvantage that, to verify signatures, we would have
all six signatures so that you may discover intrasigner t0 access this database, which in all likelihood would be
variations among them. Below the six originals, | show five located remotely. However, central storage would allow us
attempted forgeries, and, to the right of these originals and t0 update, gradually and transparently to signers, the model
forgeries, | show nine genuines, indicating alongside each Of each signer’s signature as this signature evolves over
classified signature, to its right, the (scaled) numerical error time. With regard to the net risk due to possible tampering
put out for that signature by my implementation. In this Of stored signature models, it is unclear which storage
example, the errors for the genuines and the forgeries aredlternative poses a greater risk: Whereas a central database
clearly bimodal, this bimodality facilitating straightforward ~can probably be made more secure against tampering than
discrimination between the genuines and the forgeries. can individual smart cards, any compromise in the security
Notice that one significant distinction between the forgeries Of a database is likely to lead to more dire consequences.
and the six originals is the way in which the “a’s” are We could, of course, store signature models both on smart
looped. In comparing the various signatures visually, note cards and in a central database simultaneously, retrieving,
not only variations between the forms of corresponding in €ach instance of signature verification, the model of the
characters, but also between their sizes and their orienta-Signature from the source that better suits the constraints

tions relative to the rest of the signature of which they are and demands of the particular situation.
a part. Let me now describe a particular system for automatic

A final point | would like to make is this: For any On-site signature verification that executes in real time

given database, perhaps a composite of multiple individual the algorithm we discussed in Section VI. This system,
databases, we can always fine tune a signature-verificationshown in the photograph in Fig. 21, has four principal
system to provide the best overall error tradeoff curve for hardware components: a notebook personal computer, an
that database—for the three databases here, | was able tglectronic writing tablet, a smart card, and a smart-card
bring my overall equal-error rate down to about 2.5%—but reader. The writing tablet and the smart-card reader are
we must always ask ourselves, does this fine tuning make
common sens@ the real world? If the fine tuning does 5| arrived at this rough estimate for the storage required for a high-
not make common sense. it is in all likelihood exploiting g fidelity digital model of a typical on-line handwritten signature—of the
liari fthe d b ' h if d | . d order of a few hundred bytes—through the following thumbnail argument.
peculiarity of the database. Then, if we do plan to introduce assyme that a signature has ten “characters” each of whose properties we

the system into the marketplace, we are better off without must represent at ten locations to construct a high-fidelity model of the
the fine tuning. signature. Irrespective of the particular properties of each “character” we
choose to represent at each location, for our model to have a high fidelity,
we must capture at least the average and the variance of the position,
the orientation, and the curvature of the signature at each location across
IX. A SIGNATURE-VERIFICATION SYSTEM multiple instances of the signature. Then, for a high-fidelity digital model
.. . L of a signature, we inherently need several bytes to represent the properties
In the marketplace, itis desirable that automatic signature of the signature at each location, and, therefore, several hundred bytes to

verification be feasible not only over the network, but also represent the properties of the signature at all locations.
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Fig. 21. A signature-verification system.

both connected to the notebook computer through serial signature on the smart card too, again after straightfor-
ports; one serial port is standard on the notebook computerward compression; the storage requirement for a specimen
and another serial port is configured through a PCMCIA- signature was typically between a few hundred bytes and
slot adapter. The writing tablet captures on-line signaturesa kilobyte, depending on the signature. Such a sample
and sends them to the notebook computer, which createssignature allows the human operating the system not only to
signature models, storing each model on a smart cardoverride the automatic result, but also show the signer why
from which we can subsequently retrieve the model for a particular signature was rejected. Note that even though
on-site signature verification. The notebook computer is our signature model is relatively unique to a signature,
based on the Intel 486 DX2/50 MHz microprocessor, and we cannot effectively recover a specimen signature from
the electronic writing tablet is an LCD writing tablet with its model. Thus potential forgers cannot recreate a card
a maximum uniform spatial resolution of 512 dots/in (or owner’s signature from just the model stored on the card:
about 0.05 mm) along both the horizontal and vertical They need access to the specimen signature stored on the
directions, and with a uniform temporal sampling rate card if the card is all they have to work with. Hence, we
of 200 samples/s. However, owing to on-tablet signature should consider the interesting possibility of encoding the
smoothing and compression, these spatial and temporalspecimen signature we store on the card on the basis of
sampling rates of the writing tablet were not available to a PIN, which is known only to the rightful owner of the
us uniformly. smart card, and which is necessary to decode the signature
We tested the described system most extensively usingfor visual display.
six signatures to model each signature; this choice is based Modeling a signature from its six specimens takes about
on the database results we discussed in Section VIIl. The20 s, and verifying a signature takes about 2 s. After veri-
model of each signature we stored on a smart card requiredfication, a window pops up displaying an answer between
about 600 bytes, after some straightforward compression.—100 and+100, a positive value indicating acceptance of
Although we do not require a visual sample of a signature a signature as a genuine, and a negative value indicating
for automatic verification, we stored one such sample its rejection—the larger the magnitude, the greater the
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acceptance or rejection. The threshold zero, which distin-
guishes forgeries from genuines here, corresponds to 0.50
on the scale of Figs. 19 and 20, and it corresponds roughly
to 7% false rejects and 1% false accepts on the error
tradeoff curve for DB in Fig. 16. Typically, we observed

a correlation between the magnitude of the answer and
the degree of apparent visual similarity or dissimilarity

between the signature being verified and its previously

the system into the marketplace, as we discussed in
Section lIl.

In the event of signature rejection by the verification
system, we must have a clear fall-back procedure, such
as manual verification of the signature by comparing
it against its stored visual sample, this sample being
accessible only by entering a password or a PIN known
only to the original signer.

stored specimen. Anecdotally, if the model acquired was Further, it would help to conduct the field trial in multiple
good, which was the case roughly nine out of every phases, at least two, the experience of conducting one phase
ten times, the quality of verification greatly impressed allowing us to modify the succeeding phase.

users of the system. In the roughly one out of every Topics in on-line signature verification that deserve our
ten times that the performance of the system was not asfyrther attention include the following:

impressive, remodeling often corrected the situation. This
anecdotal observation in laboratory settings is in line with
the observation in Section 1V, supported by Section VIII,
that the goats of a system typically limit its performance.

In any event, some signers will always be too inconsistent
to allow us to build a model of their signatures that will
allow us to both accept genuine signatures and reject
forgeries reliably. Based on the database results of the
preceding section, this number is probably at around 5%.
We have three choices for such signers: We can attempt
to force them to be consistent—something not always
possible—we can insist that these signers use an additional
mechanism of identification, such as a PIN, or we can
altogether abandon the use of signatures for such signers,
taking recourse to other mechanisms of identification and
authorization.

X. CONCLUSION

What is primarily lacking in this investigation of au-
tomatic on-line signature verification is a field test of a
real-time on-line on-site system based on the signature-
verification algorithm we discussed. In my judgment, the
necessary conditions that | laid out for such an undertaking
in Section Il have been met: Most users of the described
system in a laboratory setting have expressed satisfaction at
its performance, and the error tradeoff curves for the system
on three different databases seem reasonable. These are
suggestions for a field trial.

better models for signatures whose instances are not
shaped consistently or for which we have fewer than
six instances to build a model;

acquisition of instances of a signature used to build
its model over multiple sessions, rather than over a
single session, to obtain a more representative variety
of instances of the signature;

invocation of multiple models for individuals with
multiple distinct signatures;

statistically well-founded procedures for determining
the parameters of a model from the relatively few in-
stances of a signature available to model the signature;
automatic adaptation of models to signatures as they
evolve over time;

theoretically sound statistical framework to exploit
fully each of the various individual error measures
generated from comparing the characteristic functions
of a signature to their prototypes;

partial matching of signatures, highlighting discrepan-
cies if they are specific;

identification of problem signers, including those who
are unusually inconsistent or have signatures that are
trivial to forge;

comparison of signatures to their models at multiple
or personalized resolutions, rather than at a single
common resolution.

méSver and above these issues, we must also further in-
vestigate the usefulness of pen dynamics during on-line

* The signatures acquired and verified must be purpose-gjgnatyre production in automatic on-line signature veri-

ful, as for gaining access to a facility.

fication. Such dynamics might include not only velocities

* The signatures of each participant in the trial must be g4 forces, but also the varying orientation of the pen, and
verified over an extended period of time, as individual o way in which a signer grasps a pen.

signatures tend to vary from day to day.
* The signatures must be from individuals who can

easily be contacted during and after the trial for their ACKNOWLEDGMENT

feedback on the system, individuals such as employees E. Pednault created the writing-tablet interface that first
of an organization. made it possible for me to conduct live experiments,
» After a signer provides a signature for verification, such experiments crucial to the progress of my effort
but prior to its automatic verification, the signer must since the start. D. Weimer, with his uncommon intuition
be asked to rate the quality of the signature—perhaps and artistic skills, highlighted the inadequacy of my early
from very goodto very bad This information would developmental efforts through live experiments. J. Bromley
help us establish the correlation, if any, between the provided me two of the three databases on which | tested
perception of signers of the quality of their signatures various implementations of my algorithm, and W. Turin
and the answers generated by the system, such corprovided me the third database. W. DePope unhesitatingly
relation being important for successfully introducing addressed my innumerable personal-computer questions,
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and R. Carlisle ported my C code to a personal computer
that was coupled to a writing tablet and to a smart-
card reader, configuring the signature-verification system

| described.

L. Rabiner and N. Jayant supported this effort through
a critical phase in 1993, and A. Netravali and P. Henry

(13]
(14]

provided me an environment for its unhindered completion [15]
in 1994, when | first reported this work in an internal

Bell Laboratories Technical Memorandum. | am especially

grateful to A. Netravali for his unwavering support.
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