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Automatic on-line signature verification is an intriguing intel-
lectual challenge with many practical applications. I review the
context of this problem and then describe my own approach to it,
which breaks with tradition by relying primarily on the detailed
shape of a signature for its automatic verification, rather than
relying primarily on the pen dynamics during the production of
the signature. I propose a robust, reliable, and elastic local-
shape-based model for handwritten on-line curves; this model
is generated by first parameterizing each on-line curve over its
normalized arc-length and then representing along the length
of the curve, in a moving coordinate frame, measures of the
curve within a sliding window that are analogous to the position
of the center of mass, the torque exerted by a force, and the
moments of inertia of a mass distribution about its center of mass.
Further, I suggest the weighted and biased harmonic mean as a
graceful mechanism of combining errors from multiple models of
which at least one model is applicable but not necessarily more
than one model is applicable, recommending that each signature
be represented by multiple models, these models, perhaps, local
and global, shape based and dynamics based. Finally, I outline
a signature-verification algorithm that I have implemented and
tested successfully both on databases and in live experiments.

I. INTRODUCTION

Signature verification is an art. Whereas we may bring
objective measures to bear on the problem, in the final
analysis, the problem remains subjective. This art is both
well studied and well documented as it applies to human
verification of signatures whose only records are visual
[13], [5], [10]—that is, as it applies to signatures during
whose production no measurement is made of the pen tra-
jectory or dynamics. Let us call such signatures, for which
we have only a static visual record,off-line, and let us call
signatures during whose production the pen trajectory or
dynamics is capturedon-line. Whereas attempts to automate
the verification of off-line signatures have fallen well short
of human performance to this point, I shall demonstrate that
automatic on-line signature verification is feasible.

In a break with tradition, I challenge the notion that the
success of automatic on-line signature verification hinges
on the capture of velocities or forces during signature
production. Whereas velocities and forces can assist us
in automatic on-line signature verification, I contend that
we should not depend on them solely, or even primar-
ily. If we were indeed unavoidably consistent over the
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dimensions of time and force when we signed, the use of
pen dynamics during signature production—over and above
that of signature shape—would be very useful in detecting
forgeries, as dynamic information pertinent to a signature
is not as readily available to a potential forger as is the
shape of the signature, given just the signature’s off-line
specimens.However, I have seen no substantive evidence to
the effect that our pen dynamics is as consistent as, or more
consistent than, our final signature shape when we sign.
My own informal experiments indicate that we typically
exhibit similar temporal variations over the production of
similar handwritten curves: In general, our speed along
high-curvature curve segments is low relative to our speed
along low-curvature curve segments, with our average
overall speed varying greatly from one instance of a pattern
to another irrespective of whether we are producing our
own pattern or forging someone else’s. This observation
suggests that at least the requirement of consistency over
time during signature production is of limited value beyond
that of consistency over shape. At any rate, irrespective of
the velocities and forces generated during the production of
a signature, for us to declare two signatures to be produced
by the same individual, clearly, it is necessary that the
shapes of the signatures match closely.

Hence, I have based my signature-verification strategy
primarily on the shapes of signatures; although, at this
point, I do depend on time, this dependence is weak and
could be removed, as I shall explain. Thus although my
verification technique does require the capture of pen tra-
jectories during signature production, unlike other reported
on-line signature verification techniques, my technique can
do without the explicit capture of any temporal, force, or
pressure information during signature production.

I propose that each handwritten on-line signature be
represented by multiple models: local and global, shape
based and time based, including a model that is local and
purely shape based. Whereas global models are easier to
devise than local models—and, hence, global models are
more widely used than local models—for signatures whose
various instances are shaped consistently, global models are
less discriminating than and less robust than local-shape-
based models. My principal contributions to automatic
on-line signature verification are twofold. First, I suggest
the weighted and biased harmonic mean as a graceful
mechanism of combining errors from multiple models of
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which at least one model is applicable but not necessarily
more than one model is applicable. Second, I devise a
robust, reliable, and elastic local-shape-based model for
handwritten on-line curves. This model is generated by
first parameterizing each on-line curve over its normalized
arc-length and then representing along the length of the
curve, in a moving coordinate frame, measures of the curve
within a sliding window that are analogous to the position
of the center of mass, the torque exerted by a force, and the
moments of inertia of a mass distribution about its center
of mass. I have implemented and tested my signature-
verification algorithm successfully both on databases and
in live experiments.

Successful on-line signature verification that is based on
comparing the varying local shapes of signatures offers
several important advantages over alternative techniques,
especially over those that are not shape based.

• Local-shape-based signature verification is more likely
than alternative techniques to reject only those genuine
signatures that will be accepted by original signers
as nonrepresentative of their signatures, because such
signers would typically base their judgment of the
fidelity of their signatures on ana posteriori visual
examination of the detailed shapes of their signatures,
rather than on the velocities or forces generated during
the production of these signatures. Such acceptance
by nonfraudulent signers—of the inevitable rejection
of some genuine signatures by a signature-verification
system—is key to the acceptance of the signature-
verification system by consumers in the marketplace.

• Local shape-based comparisons of signatures, in con-
trast to global comparisons, avoid lumping together
differences between signatures irrespective of their
causes, which is important to us because we would
like to distinguish between errors that are caused by
isolated mistakes, such as inadvertent isolated gaps in
writing, and errors caused by systematic deviations,
such as those due to different writing styles.

• Local-shape-based signature verification can po-
tentially highlight, for human consumption, local
“nonobvious” similarities and discrepancies between
the shapes of two signatures—perhaps so that a
customer or a court of law canseewhy a particular
signature was accepted or rejected.

• Shape-based signature verification does not require us
to be consistent over the additional dimensions of time
and force when we sign, a requirement that would
alter the traditional expectation from us that we be
consistent over only the shape of our signature when
we sign. Alteration of this traditional expectation, it
seems, would force many of us to change “the way in
which we do business,” weakening what is probably
the strongest argument in favor of the continued use of
handwritten signatures for verification (see Section II).

Of course, if we were unavoidably consistent over the
dimensions of time and force when we signed, this last
item would be a nonissue.

I would like to point out here, that because of their
time independence, most of the tools I have developed
for the elastic local comparison of handwritten shapes are
immediately applicable both to on-line handwriting verifi-
cation—which could be used to verify a user’s identity by
requesting the user to write something specific—and to on-
line handwriting recognition. Note here, however, that my
use of the pen trajectory to parametrize each on-line curve
implies that visually identical curves that are traversed
differently will be represented differently. Whereas this
aspect of the representation I propose is advantageous to
verification, it is disadvantageous to recognition. Further,
note that signature verification is both easier and more diffi-
cult than handwriting recognition. Verification is easier than
recognition because, in verification, we knowa priori what
pattern to expect: All that successful verification entails is
the comparison of an input pattern with a stored model.
However, verification is more difficult than recognition
because, unlike in recognition, where we are justified in
assuming a cooperative human, in verification, we must
allow for an adversary who is keenly intent on deceiving
the system. Hence, whereas the answer in verification might
simply be ayes or a no, successful verification requires
the ability to detect subtle differences between patterns,
an ability not required by recognition. More specifically,
successful signature verification hinges on the ability to
distinguish between inadvertent intrasigner variations on
the one hand, and intersigner variations and advertent
intrasigner variations on the other hand. We shall discuss
this assertion at length in Section III.

I have organized this paper into ten sections. In
Section II, I categorize the various techniques commonly
used to verify the identities of individuals. In Section III, I
describe what constitutes successful signature verification.
In Section IV, I summarize the state of the art of automatic
on-line signature verification as recorded in the published
literature. In Section V, I highlight the key features of
my approach, several of these features differentiating my
approach from the prior art. In particular, I flesh out the
following fundamental concepts that underlie my approach:

A) harmonic mean;
B) jitter;
C) aspect normalization;
D) parameterization over normalized length;
E) sliding computation window;
F) center of mass;
G) torque;
H) moments of inertia;
I) moving coordinate frame and saturation;
J) weighted cross correlation and warping.

In Section VI, I outline my algorithm, which I have im-
plemented and tested both on databases and in live ex-
periments. In Section VII, I illustrate my algorithm with
a detailed example. In Section VIII, I describe the perfor-
mance of my implementation on three databases created
by Bell Laboratories. In Section IX, I describe a particular
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signature-verification system that runs my algorithm in real
time on a notebook personal computer, with this computer
coupled to an electronic writing tablet for capturing on-line
signatures. I conclude with Section X, where I list some
of the outstanding issues in automatic on-line signature
verification.

II. A LTERNATIVES TO SIGNATURE VERIFICATION

Signature verification is only one of several techniques
commonly used to verify the identities of individuals.
Broadly, the various techniques used for this purpose adopt
one or more of five strategies [19].

1) You remember some information, such as a password
or a personal identification number (PIN).

2) You are privy to some personal detail, such as your
date of birth or your mother’s maiden name.

3) You possess some object, such as a magnetic card or
a key.

4) You possess some unique physical characteristic, such
as a fingerprint or a retinal vascular pattern.

5) You possess the ability to perform some action con-
sistently at will—such as sign your name or speak a
phrase—in a fashion that is difficult to duplicate by
others.

See [14] for a detailed discussion of the various possi-
bilities. Among the above strategies, Strategies 1)–3) can
be inadvertently or intentionally compromised. In contrast,
Strategy 4) cannot be compromised, and Strategy 5) is
generally difficult to compromise. Strategy 4) is clearly
more objective than Strategy 5). However, Strategy 4)
has a social stigma associated with it because of this
strategy’s widespread use in the criminal justice system.
Further, Strategy 4) is easier to compromise under coercion
than is Strategy 5), not only because the latter entails a
voluntary action, but also because this action is likely to
deviate from its norm under stress. Among the various
possibilities that lie within the realm of Strategy 5), the
handwritten human signature is without doubt the most
popular, especially in financial transactions. Further, there
seems to exist a strong cultural bias toward the continued
use of handwritten human signatures for authorization and
authentication. Thus, there is money to be made in the
robust and reliable automation of signature verification.
Such an automation would not only detect attempts at fraud,
but also greatly discourage such attempts; we saw several
additional advantages of automatic signature verification in
the introduction.

III. EVALUATING PERFORMANCE

For a signature-verification system to be useful, the
system must commit few errors in practice. The strategy
often adopted to obtain an indication of a system’s error
rates, without actually introducing the system into the
marketplace, is tofield testthe system on a limited scale;
but even a limited field test can be expensive and time
consuming. Hence, it is useful to devise criteria to help

us decide whether to field test a system. I have come up
with the following two criteria to evaluate a signature-
verification systemthat is yet to be field tested; we shall
discuss both criteria in detail.

Criterion 1: When you try the system in person, it must
work.
Criterion 2: When you test the system on large databases,
it must exhibit low statistical error rates.

Neither criterion is sufficient, and both are necessary.
Criterion 1 is not sufficient in itself because any evidence

of performance gathered from one or a few isolated indi-
viduals is anecdotal: Chances are slim that these individuals
are representative of the population at large. Criterion 2 is
not sufficient in itself as, in the evaluation of a verification
system, unlike in the evaluation of a recognition system,
it is necessary to consider determined forgers who have
access to feedback from the system. The difficulty of a
successful forgery, given such feedback, provides a more
realistic assessment of the vulnerability of a verification
system than does a preexisting database. Bear in mind here
that genuine signers would also adapt to the system in
the marketplace, learning quickly what it is they have to
do to have their signatures accepted by the system in the
first try—assuming, of course, that the answer put out by
the system is correlated to characteristics of the signature
apparent to the signer. This raises two important points.
One, as users of the system, both genuine signers and
forgers, adapt to the system, the observed performance of
the system will change: Both fewer genuine signers and
fewer forgers will be rejected by the system. Two, the
observed performance of the system for new users of the
system will be different than that for accustomed users. Let
us now discuss both Criterion 1 and Criterion 2 in turn.

Criterion 1, of course, begs the issue unless we can reach
agreement on whatwork means. I can think of at least three
conditions that must be met for us to declare a system to
work when it is tried in person.

• The system must recognize your visually similar
scribbles consistently, notwithstanding discrepancies
in velocities during the production of these scribbles,
and notwithstanding minor inadvertent discrepancies
in their shapes.

• You must find it difficult, if not impossible, to forge
someone else’s signature successfully—even more so,
to do so consistently—irrespective of whether you
trace the signature, copy the signature, practice the
signature first, have complete knowledge of the sig-
nature’s generation, or know precisely the strategy
adopted by the signature-verification system.

• You must not be able to generate a scribble that
is visually disparate from your signature and is yet
accepted by the signature-verification system as your
signature.

The first condition enables genuine transactions. The second
condition hinderssecond-party fraud—that is, fraud by an
entity other than the genuine signer. The third condition
hinders self fraud—that is, fraud by the genuine signer.
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Omission of the third condition would open up the possi-
bility of a genuine signer authorizing a transaction with the
a priori intent of later denying this authorization by pointing
to the visual discrepancy between the authorizing signature
and the expected signature as proof of second-party fraud.

In the context of on-line signature verification, we need
to qualify the first condition above aimed at the in-person
evaluation of a signature-verification system—namely, the
condition that the system must recognize your visually sim-
ilar scribbles consistently. In on-line signature verification,
we require that all genuine instances of a signature be
traversed qualitatively similarly as functions of time (i.e.,
with similar trajectories), irrespective of whether we require
that these instances be produced quantitatively similarly
as functions of time (i.e., with roughly similar, or even
proportional, velocities). Whereas the latter requirement
might be an imposition on genuine signers as we discussed,
the former requirement is met naturally by genuine signers.
The critical advantage of on-line signatures over off-line
signatures in the automation of their verification is precisely
the availability of the pen trajectories during the production
of on-line signatures. It is these trajectories that we match in
on-line signature verification, rather than their end products,
which are just off-line signatures. If we assume that the
information in each on-line signature is a superset of
the information in its off-line counterpart, it is clear that
successful automatic on-line signature verification is a
precondition for successful automatic off-line signature
verification.

I stress again that Criterion 1 is essential for evaluat-
ing a verification system, more so than for evaluating a
recognition system, because the quality of a verification
system hinges on the inability of determined individuals to
defeat the system. Then, to evaluate a verification system
thoroughly, we must provide determined forgers complete
access to the system—access such as forgers might gain
once the system is introduced into the marketplace. Such
access provides individuals with the opportunity to exper-
iment with the system, to learn from the system response,
and eventually to discover loopholes in the system, if any. It
is prudent to assume that a system’s loopholes would sooner
or later be discovered if the system were ever introduced
into the marketplace. Whereas the evaluation of Criterion 1
is subjective, I must mention that I have had little difficulty
finding willing and determined forgers: Most individuals
seem to relish the gamelike nature of trying to beat the
system, and go to the task with a vengeance. However,
none of my forgers have been professional forgers.

What factors contribute to a successful forgery? Let
us assume that the forger has complete knowledge of
the production of the signature to be forged and of the
signature-verification strategy used. Then, in my experi-
ence with amateur forgers, thetwo foremost factors that
contribute to a successful forgeryare these:

1) inconsistency across instances of the genuine signa-
ture used by the verification system to build a model
of the signature;

2) simplicity of the genuine signature, this simplicity
characterized by the domination of the signature by
a few low-curvature strokes.

The simpler the signature, the greater the consistency
needed to thwart forgeries. Another factor that contributes
to successful forgery is inherent similarity between the
writing style of the forger and the writing style of the
original signer. Deftness of the forger at drawing also helps,
with such deftness enabling the forger to reproduce pen
strokes gracefully and with control. In the circumstances
particular to my live experiments, the capacity of the forger
to understand the feedback provided by the verification sys-
tem, perhaps only intuitively, and learn from this feedback
was also a factor. Another contributing factor, not to be
overlooked, is the determination of the forger to succeed.

Criterion 2 for evaluating a signature-verification system
also requires some background—as did Criterion 1. Now,
in any verification task, there are two types of errors we
can commit: false rejects and false accepts. In the current
context, afalse reject is a signature that we reject even
though the signature is not a forgery, and afalse accept
is a signature that we accept even though the signature
is a forgery. Clearly, we can trade off one type of error
for the other type of error. In particular, if we accept
every signature as a genuine, we shall have 0% false
rejects and 100% false accepts, and, if we reject every
signature as a forgery, we shall have 100% false rejects
and 0% false accepts. Thus, in the statistical evaluation of
a verification system, whether on a database or otherwise,
we must determine the percentage of false accepts as a
function of the percentage of false rejects. The ensuing
curve—the error tradeoff curve—which trades off false
accepts for false rejects, is often characterized by itsequal-
error rate, which is the error rate at which the percentage
of false accepts is equal to the percentage of false rejects.
The equal-error rate, despite its convenience as an indicator
of system performance, of course, is no substitute for the
actual tradeoff curve, especially if we intend to operate the
system in a range outside the immediate vicinity of the
equal-error rate.

The specification of a tradeoff curve relating false accepts
to false rejects assumes knowledge of, and agreement on, a
ground truth. In reality, it is not always clear what a false re-
ject is. In particular, is it an error to reject a signature that is
produced by the original signer but thatlookssubstantially
different from that signer’s specimen signatures? If not,
who or what decides whether two signatureslook different?
If yes, are we affording opportunities to individuals to
disown their signatures after the fact? Note that, even if
we were to reach a consensus on what constitutes a false
reject, two systems with similar error tradeoff curves could
perform very differently in practice. In particular, the nature
of the false rejects—and false accepts—of the two systems
could be quite different. Such a difference can be very
important from a practical standpoint. For instance, whereas
a consumer might be willing to assume responsibility for
a false reject that is visually dissimilar to the consumer’s
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typical signature, the very same consumer is likely to be
annoyed if a false reject is visually similar to the consumer’s
typical signature. Thus, given two systems with similar
error tradeoff curves, one system might be accepted by the
marketplace, and the other rejected.

It is thus clear that the evaluation of a signature-
verification system cannot simply be reduced to a graph, or
to a set of numbers. Numbers might help, but they cannot
suffice; at best, numbers obtained from a database, or from
a field trial, provide a sample of system performance. It
should not surprise us that there is no clear-cut objective
criterion to evaluate a signature-verification system.
Signature verification, after all, is an art, and even though
we might bring objective measures to bear on the problem,
in the final analysis, the problem remains subjective.

IV. PRIOR ART

My review of the literature, and of the most com-
prehensive published survey [9] with its accompanying
bibliography [15] (see also [7]), indicates the existence
of a widely held belief that the temporal characteristics
of the production of an on-line signature are key to the
signature’s verification. I am not sure what the basis for
this belief is—after all, we have for centuries relied on a
visual examination of a signature to verify the signature’s
authenticity. Of the many possible reasons for this belief,
two reasons come readily to mind. The first reason is that,
in experiments, the temporal characteristics of signature
production are seen to provide better system performance
than alternate characteristics. The second reason is that the
production of a signature is believed to be necessarily a
reflex action, or a ballistic action, rather than adeliberate
action [9]. Ballistic handwriting is characterized by a spurt
of activity, without positional feedback, whereas deliberate
handwriting is characterized by a conscious attempt to
produce a visual pattern with the aid of positional feedback.

I challenge, on two counts, the belief that signature
production is necessarily ballistic and also the more widely
held notion that the temporal characteristics of signa-
ture production are key to signature verification. The first
count is that many signers—including most of my ac-
quaintances—can produce their signatures both ballistically
and deliberately, with the exact mechanism of production
in a particular instance depending on the urgency and
importance of the task. In general, it is fast handwriting
that is ballistic [3] rather than signature productionper se,
and many of us have and exercise control over the speed
with which we sign. The second count is that even if we
were to group together all the instances of the ballistic
production of a signature, there is no compelling reason
why these instances would exhibit temporal consistency. I
suspect that the apparent success of the use of the temporal
characteristics of on-line signatures in their verification is,
at least partially, an artifact of the testing methodology:
It is clearly easy to detect forgers on the basis of time
when these forgers, being unaware that time is critical to
verification, are making every effort to reproduce the shape

of the signature they are trying to forge, with little attention
to time. I must emphasize that I am not arguing here that
the temporal characteristics of signature production are not
potentially useful for automatic signature verification, but
rather that these characteristics should not be the primary
determinants of our decision.

The various strategies reported in the literature for the
automatic verification of on-line signatures rely typically ei-
ther on comparing specific features of signatures or on com-
paring specific temporal functions captured during signature
production, or, perhaps, on both [9]. Although the signature
features that are compared are typically global—such as the
total time taken, or the average or rms speed, acceleration,
force, or pressure [2], [12]—these features could be local,
such as the starting orientation or speed. Typical signature
functions that are compared include pressure versus time,
and the horizontal and vertical components of position, ve-
locity, acceleration, and force, each versus time [18]–[20].
The more sophisticated among the temporal-function-based
approaches allow the horizontal axes of the functions to
warp during comparison [18], [20], and approaches that rely
on comparing temporal functions reputedly perform better,
in general, than approaches that rely solely on comparing
features. Barring the straightforward representation of the
coordinates, orientation, and curvature of a signature along
its length, all as functions of time, few attempts have been
made to characterize the local shape of a signature. One
exception to this observation is the work of Hastie and his
coauthors [6], who match signatures by first segmenting
them at places of low speed and then seeking the optimal
affine transformation between each segment and its stored
prototype. However, segmentation-based approaches are, in
general, not robust owing to their rapid deterioration in the
presence of segmentation errors that are bound to occur
sooner or later.

I have had the opportunity to try out, in person, only one
well-known signature-verification system created outside
Bell Laboratories, and the various statistical results reported
in the literature are difficult to compare because of the
very disparate conditions under which these results were
produced. In database testing, we can in practice obtain
almost any desired statistical tradeoff between false rejects
and false accepts if we allow ourselves the luxury of
suitably pruning or restricting the database on which we test
the system. Such pruning is often easy as the performance
of a verification system on a database is typically limited by
the database’sgoats, a term used to describe the typically
few individuals who account for a large majority of the
errors—in our case, by producing signatures that are either
inconsistent or degenerate; see, for instance, [2] and [9].
Note, here, also that the false-reject statistics obtained in
laboratory settings are likely to be overly optimistic vis-
á-vis results that would be obtained in more unregulated
settings [9]. Further, I point out that the validity of many
of the results reported in the literature is suspect in real-
world settings, because, in most experiments, forgers are
not provided all the knowledge that they could gain over
time if the verification system were ever introduced into the
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marketplace. For instance, it is clearly easy to detect forgers
who are making every effort to duplicate a shape while all
that the verification system is measuring is the total time
taken; under such circumstances, a forger would clearly
have greater success by ignoring the shape completely and
concentrating on duplicating the total time taken. I believe
this artifact of testing to be a significant contributor to the
widespread emphasis given to the temporal characteristics
of on-line signatures in their automatic verification.

There is a plethora of reasons other than those that I
have just mentioned why a direct comparison of the various
published statistical results is of little value. Some tests
allow each user multiple tries to have a signature validated
by the verification system, whereas other tests do not permit
multiple tries.1 In some experiments, the users are highly
motivated—for instance, by financial reward [19]—whereas
in other experiments, the users are largely unmotivated. In
some experiments, the false-accept statistics are based on
so-called random forgeries that typically have little or no
similarity to the genuine signatures they are supposed to
represent. Arandom forgery, as its name suggests, is a
pattern that by design is not related to the original signature;
such a forgery is to be expected when a forger does not have
ready access to the original signature, as might happen, for
instance, if a credit card were stolen in transit before a
genuine signature could be produced on the card.

All the reasons stated above point to the difficulty of
comparing the various published statistical results. Hence,
as a practical matter, we have no choice but to take recourse
to our common sensein judging the quality of the various
efforts toward automatic on-line signature verification. My
own examination of the various published techniques makes
me very sceptical of their efficacy in practice as stand-
alone techniques. This scepticism is borne of my conviction
that the varying local shape of a signature, as we proceed
along the length of the signature, is key to the signature’s
verification, and, in my judgement, the published techniques
are by and large conceptually inadequate at capturing the
local shape of a signature.

V. KEY CONCEPTS

In this section, I describe some of the key ideas that un-
derlie my approach to on-line signature verification. Many
of these ideas are novel, and others have not been applied
previously to signature verification. The presentation of the
ideas might seem disorderly, but I shall bring all of them
together in an algorithm in Section VI.

The first idea, that of the harmonic mean, provides a
graceful mechanism of combining errors from multiple
models of which at least one model is applicable, but
not necessarily more than one model is applicable. The
second idea, that of jitter, provides a measure of any abrupt

1If we assume that each attempt by an individual to have a signature
accepted by a verification system is independently identically distributed
(i.i.d.), and that the probability of a false reject in a single try ispr, and
that the probability of a false accept in a single try ispa � 1, then the
probability of a false reject in each ofn tries ispn

r
, and the probability

of a false accept in at least one ofn tries is approximatelynpa.

adjustments in the pen trajectory during the course of
signing, a large value of jitter often indicating a forgery. The
third idea, that of aspect normalization, allows individuals
to scale their signatures unequally along the horizontal
and vertical dimensions, such unequal scaling of signatures
often observed in practice.

The other ideas relate to creating and comparing robust,
reliable, and elastic local-shape-based models of hand-
written on-line curves. The local-shape-based model of a
handwritten on-line signature I propose is based on first
parameterizing the signature over its normalized arc-length,
and then representing, as functions of arc-length, entities
analogous to the position of the center of mass, the torque
exerted by a force, and the moments of inertia of a mass
distribution about its center of mass, each measurement
made over a window that is sliding along the length of
the signature in unison with the motion of a coordinate
frame with respect to which the measurement is made.
Let us call these functions of arc-length—functions that
we are using to represent the signature—thecharacteristic
functions of the signature. The proposed characteristic
functions provide robust descriptions of local shape that
depend on the position, orientation, and curvature of the
curve along its length. The straightforward approach to
measuring the orientation or curvature of a curve would
involve estimating the curve’s derivatives, an operation that
is well known to emphasize noise.2 Given the proposed
representation, we compare a curve to its prototype by
computing the cross correlation of each of the curve’s
characteristic functions with the function’s prototype. In the
computation of these cross correlations, we weight more
heavily those portions of each characteristic function over
which the original signer is relatively consistent, and less
heavily those portions over which the original signer is
relatively inconsistent. Further, in the computation of these
cross correlations, we allow all the characteristic functions
of a curve to warp simultaneously along their lengths so
as to maximize an overall measure of the cross correlation
between the characteristic functions and their prototypes.

A. Harmonic Mean

The most popular method of combining two errors is
to compute their root weighted-mean square. In particular,
if we represent two errors by and , then theroot
weighted-mean squareof the two errors is

, whose isocontours are ellipses—that is, each of
whose loci in the – plane for a particular is an ellipse.
An immediate generalization of this error combination is

2The effect of differentiation on signal noise is appreciated easily
by examining the effect of differentiation’s discrete implementation,
differencing, on a discrete signal. Consider a discrete one-dimensional (1-
D) signalzi corrupted by additive, i.i.d., zero-mean noise�i with variance
�
2

�
. Say,si = zi+ �i. Then, the noise(�i+1��i) in the first difference

(si+1 � si) of the signal is easily seen to have zero mean and variance
2�2

�
[11]. That is, the variance of the noise in the first difference of a

signal is twice the variance of the noise in the original signal. It follows
that the variance of the noise in thenth difference of a signal is2n

times the variance of the noise in the original signal. Finally, note that the
straightforward discrete computation of a curve’s orientation and curvature
entails taking its first and second differences, respectively.
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Fig. 1. Superellipses.

, where , , and are all
positive. Fig. 1 illustrates the isocontours of this expression
for various when ; curves such as those illustrated,
which are generalizations of ellipses, are calledsuperel-
lipses[11]. A possible drawback of this ubiquitous family
of error combinations is that this family takes into account
each of the two errors,irrespective of the other error. In
a sense, this mechanism of combining errors AND’s the
errors—assuming here that a low error corresponds to a
Boolean 1, and a high error corresponds to a Boolean 0.
But, what if we wish to OR the errors? We might want
to do this, for instance, if and are derived from two
different models of which at least one model is applicable,
but not both models are necessarily applicable.

One mechanism of ORing two errors, if you will, is to
replace the superelliptical isocontours above by superhy-
perbolic isocontours. We can accomplish this goal easily by
constraining in the superelliptic error expression above
to be negative instead of positive. Say, . Then we
get , where , ,
and are all positive. Fig. 2 illustrates the isocontours of
this expression for various when ; curves such as
those illustrated, which are generalizations of hyperbolas,
are calledsuperhyperbolas. Now, if we put , and
assume that both and are positive, then will become
the weighted harmonic meanof and . That is, we will
have

or equivalently

The isocontours of the weighted harmonic mean are simply
hyperbolas with asymptotes and , as
illustrated in Fig. 3 for and . Now, if we put

in the expression for the weighted harmonic
mean, will simply become the unweighted harmonic mean
of and . Whereas the unweighted arithmetic mean
of a collection of numbers is their average—the sum of
the numbers divided by their count—the reciprocal of the
unweighted harmonic mean of a collection of numbers is

Fig. 2. Superhyperbolas.

Fig. 3. Isocontours of weighted harmonic mean.

the average of the reciprocals of the individual numbers,
as reflected in the above expression for the harmonic mean
[1]. Before we move on, note that, if we had put
instead of while deriving the above expression for
the weighted harmonic mean, thenwould have become
the rootweighted-harmonic-mean squareof and , and
we would have

where we have made the substitutions and
.

Finally, let us further generalize the notion of the
weighted harmonic mean of two numbers by allowing
each of the two numbers to be biased. In particular, let us
define theweighted and biased harmonic meanof two
numbers and to be
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(a) (b)

Fig. 4. Currents through resistors in parallel and series.

Here, is said to be biased by , and by . What
such biasing does to the hyperbolic isocontours of the
weighted harmonic mean—that is, to isocontours such as
those illustrated in Fig. 3—is translate them by along
the -axis and by along the -axis.

Our discussion of various combinations of individual er-
rors here applies, in all its generality, equally well to errors
from multiple models as it applies to errors from just two
models. In particular, whereas , where

and are positive, provides a convenient mechanism
of ANDing in a manner of speaking—assuming that a
small corresponds to a Boolean 1, and a largeto a
Boolean 0— , where and
are positive, provides a convenient mechanism of ORing.

For those of you familiar with elementary circuit theory,
an electrical interpretation of the harmonic mean is instruc-
tive here. Given a set of resistors arranged in parallel, as in
Fig. 4(a), the overall current through the set of resistors
will be inversely proportional to the harmonic mean of
the individual resistances in the set; in such a circuit
configuration, ifanyof the resistors arranged in parallel has
a low resistance, the overall circuit current will belarge.
In contrast, if the resistors were arranged in series, as in
Fig. 4(b), the overall current would be inversely propor-
tional to the arithmetic mean of the individual resistances;
in such a circuit configuration, ifany of the resistors in
series has ahigh resistance, the overall circuit current will
be small.

B. Jitter

When individuals attempt to copy or trace a preexisting
curve closely, as often happens in forgery, they produce
a “jitter” owing to the act of constantly correcting the
pen trajectory to conform to thea priori curve. Such
jitter is illustrated in Fig. 5. This jitter often exceeds the
quantization errors that result from the use of a discrete
spatial sampling grid to capture on-line signatures—these
quantization errors, of course, depending on the rate of pen
motion vis-́a-vis the temporal sampling rate. A measure of
jitter that I have found useful is

Jitter

length of polygonal (or other)
smoothing approximation to data
total sum of intersample distances

Note that 0 Jitter 1.

Fig. 5. Jitter.

Fig. 6. Aspect variation.

C. Aspect Normalization

Individuals do not scale their signatures equally along
the horizontal and vertical dimensions when they sign [4].
You might, for instance, make your signature fatter without
making it any taller, as illustrated in Fig. 6. Hence, before
we verify the shape of a signature, we must standardize the
signature’s ratio of height to width—this ratio called the
signature’s aspect. A measure ofaspectthat I have found
useful is

Aspect
total sum of vertical displacements

total sum of horizontal displacements

The displacements in this expression are the unsigned
vertical and horizontal components of the arc-lengths of
curves fitted to the data.

D. Parameterization over Normalized Length

Theparameterizationof a curve is the creation of a one-
to-one mapping from a subset of the real line onto the
curve. The real line here, which is said toparameterizethe
curve, provides an index orparameterby which we can
conveniently locate any point on the curve. Once we have
parameterized a curve, we can describe various properties
of the curve, such as the orientation of the curve, as
functions of the curve’s parameter.

One possible parameter of an on-line curve is the time
instant(s), relative to an arbitrary fixed time, at which the
pen is located at a position along the curve. This particular
choice of parameter seems to have been adopted universally
for on-line signatures in the past, in part, perhaps, because
of the ready availability of the pen trajectory as a function of
time, and in part because of the widespread belief discussed
in Section IV that the temporal characteristics of signature
production are key to on-line signature verification. The
choice of time as a parameter for on-line signatures seems
also to have been influenced by the use of time as a param-
eter in the relatively well-developed disciplines of speech
recognition and speech verification [16]. However, note
two important distinctions between speech and handwritten
on-line signatures: 1) unlike speech, handwritten on-line
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signatures have no inherently unavoidable reason to distort
in appearance under distortion of time, and 2) when we sign,
we implicitly aim to generate spatially consistent patterns,
and not temporally consistent, or even spatiotemporally
consistent, patterns. Recall that the primary argument in
favor of using handwritten signatures for authorization and
authentication is that their continued use would not require
us to change “the way in which we do business.” Hence,
it is probably unacceptable to request individuals to be
temporally consistent when they sign; further, it is not even
clear that most individuals could meet such a request even
if they tried.

I contend that the parameterization of any handwritten
on-line curve, including on-line signatures, should be over a
spatial metric, rather than over a temporal metric. I suggest
that we parametrize each handwritten on-line signature over
its normalized arc-length—that is, over the distance traveled
by the pen while the pen is in contact with the writing
surface, this distance measured as a fraction of the total
distance traveled by the pen while the pen is in contact
with the writing surface. Let us denote the normalized arc-
length of a signature by. Parameterization of a curve over
its arc-length is standard practice in differential geometry
[8].

E. Sliding Computation Window

Once we have parameterized a signature over its nor-
malized arc-length, what characteristics of the signature
do we represent as functions of the signature’s normalized
arc-length? The characteristics of the signature we shall
represent are derived from the center of mass, the torque,
and the moments of inertia of the signature computed over
a window that is sliding along the length of the signature
in unison with the motion of a coordinate frame. Before
we discuss each of these characteristics in sequence next,
let us spend some time on the sliding window over which
we shall compute these signature characteristics. Let us call
this sliding window thecomputation windowto distinguish
it from another sliding window that we shall discuss in the
context of the moving coordinate frame. We shall discuss
the moving coordinate frame in Section V-I.

Two questions that arise immediately in the context of
a sliding window are: what is the window’s width, and
what is the weighting along the length of the window?
With regard to the window’s width, the broader we make
the sliding window, the more we shall average the signal
noise, thus increasingly suppressing the net effect of noise
on our computations of signature characteristics.3 However,

3To see the effect of averaging on signal noise, consider once again, as
we did in Footnote 2, a discrete 1-D signalzi corrupted by additive, i.i.d.,
zero-mean noise�i with variance�2� . Say,si = zi + �i. Then, the noise
�i wi�i in the weighted average�i wisi of the signal is easily seen
to have zero mean and variance�2� �i w

2

i , wherewi are the weights
(all positive),�i wi = 1, and all summations are implicitly between
i = 1 and i = n [11]. That is, the variance of the noise in the weighted
average of a signal is the sum-of-squares of the individual weights times
the variance of the noise in the original signal. As all the weights are
positive, with unit sum, this sum-of-squares is at most one. In particular,
if all the weights are equal and the average is taken overn samples, then
this sum-of-squares is1=n.

Fig. 7. Gaussian.

a broader window does more than just increasingly smooth
out noise: It also increasingly smooths out actual signature
variations, making it harder to detect discrepancies between
forgeries and genuine signatures. Hence, in choosing the
width of our window, we must balance the prospect of
undersmoothing the noise against the prospect of over-
smoothing the signature. Typically, a reasonable choice for
the width of the sliding window is a fraction of the length
of an individual “character.” We shall discuss this choice
at greater length in Section V-I.

Now, coming to the question of the weighting along the
length of the window, several choices are possible. We
could, of course, weight the window uniformly along its
length, but such a weighting would not best serve the
desirable goal of gradually phasing in and phasing out
our center of attention along the length of the signature
as we slide the window along this length. A uniform
weighting could lead to relatively abrupt changes in our
computed values of signature characteristics when we slide
our window along the length of the signature, changes that a
discrete implementation of our computations might fail to
capture adequately. A straightforward weighting function
that would allow us to phase in and phase out our center
of attention along the signature gradually is a Gaussian
centered at the center of the sliding window, this Gaussian
narrow enough for it to taper off to near zero at either end
of the window. Recall that the Gaussian is a bell-shaped
function—of the type illustrated in Fig. 7—whose equation
in 1-D, ignoring a scale factor, is ,
where controls the width of the Gaussian. Let us adopt a
1-D Gaussian weighting function centered at the center of
the sliding window here, the of this Gaussian satisfying

, where is half the width of the sliding window.
Then, normalizing the Gaussian to have a unit integral over
the width of the sliding window, we arrive at thewindow
function

where , and outside the range .

F. Center of Mass

Assume the following: The signature is parameterized
over its normalized arc-length, as we discussed in
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Fig. 8. Center of mass.

Section V-D, the signature has a weighted window
of span sliding over its length, as we discussed in
Section V-E, and the signature has unit mass per unit
length. Then, the coordinates of thecenter of massof the
signature within the sliding window are

(1)

(2)

where are the point coordinates along the length
of the signature. Fig. 8 illustrates the center of mass of a
curve segment. The varying coordinates of the center of
mass, and , computed over a window that is sliding
along the length of a signature, together provide us with a
robust position-dependent description of the shape of the
signature.

G. Torque

The torque exerted by a vector, which is located at
position with respect to the point about which we measure
the torque, is Before we apply this notion of
torque to an on-line signature, note that the torque exerted
by a vector about a point depends on both the position and
the orientation of the vector; further, we can interpret the
magnitude of the torque about a point to be twice the area
swept by the vector with respect to that point.

Assume the following: the signature is parameterized
over its normalized arc-length (see Section V-D), the
signature has a weighted window of span sliding
over its length (see Section V-E), and the signature is
decomposed into a series of infinitesimal vectors, each
vector with magnitude equal to its length and with direction
pointing in the direction of pen motion. Then we can define
the torqueexerted about the origin by the signature within
the sliding window to be

where are the point coordinates along the length
of the signature. Here and are the
differential changes in and at the location
under a change in Given that each of our on-line
signatures resides in the- plane, here can point only

Fig. 9. Torque.

in a direction orthogonal to the- signature plane: will
point orthogonally out of the - plane if the net torque is
counterclockwise, and will point orthogonally into the -

plane if the net torque is clockwise. As a result, it suffices
for us to consider only the following scalar, which we
obtain by expanding the above vector

(3)

If we ignore the window function , we can interpret
the torque here to be twice the signed area swept
with respect to the origin by the portion of the signature
within the sliding window centered at position, a positive
value of indicating a net counterclockwise sweep and
a negative value indicating a net clockwise sweep. Fig. 9
illustrates this physical interpretation of the torque exerted
by a planar on-line curve segment about the origin. The
varying torque, , computed over a window that is
sliding along the length of a signature, can provide us with
a robust position- and orientation-dependent description of
the shape of the signature, as we shall see next.

As we noted in the introduction, the straightforward
computation of the orientation of a curve based on the
curve’s derivatives is not robust. It is this lack of robustness
that prompted us to devise a new descriptor of shape, the
torque, which depends on the orientation of the curve—and
also on its position—but does not involve estimating the
curve’s derivatives explicitly. Is the torque, as we have
defined it, a robust descriptor of shape? The answer isyes,
provided that the point about which we compute the torque
is not in the immediate vicinity of the curve segment whose
torque we compute. This assertion is established easily by
invoking the physical interpretation we provided the torque
earlier—that of twice the signed area swept by a curve
segment with respect to the point about which we compute
the torque. Given this interpretation, it is clear from Fig. 10
that our torque descriptor of shape is robust in the following
sense: a slight alteration to the shape of a curve segment
would not drastically alter the signed area swept by this
curve segment with respect to a point as long as we ensured
that the point was not in the immediate vicinity of the
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Fig. 10. Stability of torque.

curve segment. It is, of course, possible to devise other
robust descriptors of shape that depend on the orientation
of a curve—we shall devise two such descriptors in the
next subsection—but I must mention that I have found the
torque to be particularly useful.

H. Moments of Inertia

Assume the following: The signature is parameterized
over its normalized arc-length, as we discussed in
Section V-D, the signature has a weighted window
of span sliding over its length, as we discussed in
Section V-E, and the signature has unit mass per unit
length. Then themoments of inertiaabout the -axis and
the -axis, respectively, of the signature within the sliding
window are

where are the point coordinates along the length
of the signature. For future reference, let us also define the
second-order cross moment here

The varying second-order moments, , , and ,
computed over a window that is sliding along the length of
a signature, when expressed in forms and that we
shall derive, together provide us with a robust orientation-
and curvature-dependent description of the shape of the
signature.

Before we proceed to derive robust combinations of
, , and , let us examine, in order, the

dependence of the moment of inertia of a curve segment
about a line on the position and the orientation of the line.
Without any loss of generality, consider first the moment
of inertia of a curve segment about the line , which
is parallel to the -axis. This moment of inertia is readily
evaluated to be the following by substituting for

in our earlier expression for

where is as defined above, and is the -coordinate
of the center of mass of the curve segment as defined
in Section V-F. Thus we see that, given the moment of
inertia of a curve segment about a line, and, in addition,
the position of the center of mass of the curve segment,
we can compute the moment of inertia of the curve seg-
ment about any arbitrary line parallel to the original line.
Further, if the line about which we compute the moment
of inertia of a curve segment is distant from the center
of mass of the curve segment—in the expression above,
if is large—the value of the moment of inertia will
be dominated by the distance between the line and the
center of mass of the curve segment. As such a domination
would deemphasize the shape of the curve segment in
our measurement—emphasizing instead the position of
the curve segment available through —let us
measure the moments of inertia of each curve segment only
about lines through the center of mass of the curve segment.
Further, for convenience of analysis, let us position the
origin of our coordinate frame for all such measurements
at the center of mass of the curve segment.

Let us now turn our attention to the dependence of the
moment of inertia of a curve segment about a line on
the orientation of the line. Without any loss of generality,
consider the moment of inertia of a curve segment about
the line through the origin that is at a counterclockwise
angle with respect to the -axis. This moment of inertia
is readily evaluated to be the following by substituting

for in our earlier expression
for :

where , , and are as previously defined.
Thus we see that, given , , and for a curve segment
in any coordinate frame, we can compute the moment of
inertia of the curve segment about any arbitrarily oriented
line through the origin of the coordinate frame. This result
is independent of the position of the coordinate frame’s
origin, which we have chosen to be at the center of mass
of the curve segment.

Continuing our search for robust combinations of ,
, and , let us visualize the variation over, under
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constant , of the moment of inertia above. Toward
this end, let us first put in the expression
above, and then examine the polar plot ofas a function
of . Making this substitution, we get

where we have not shown the dependence of, , , and
on explicitly, which we have fixed here. Converting

the polar coordinates in this equation to the Cartesian
coordinates via the substitutions
and , we get the following quadratic
equation in and :

Thus we see that the polar plot of, as a function of ,
is a conic section. Let us now establish that this conic
section is an ellipse centered at the origin. Toward this
goal, consider the polar plot of against , for a fixed
. Then, as is the moment of inertia of a fixed curve

segment, we can deduce that is symmetric about the
origin, and further, that can be zero at most about
a single straight line through the origin—a line to which
the curve segment must be confined. Hence, , which
is the inverse square root of for a fixed , must be
symmetric about the origin and can be infinite only along
a single straight line through the origin. It follows that the
polar plot of is an ellipse centered at the origin, where
we are including as an ellipse the degenerate case of a pair
of infinite parallel straight lines positioned symmetrically
about the origin, such a degeneracy occurring whenever a
curve segment lies along a single straight line through the
origin.

Thus we have reduced the problem of describing all
possible moments of inertia of a curve segment about lines
through the center of mass of the curve segment to the
problem of describing an ellipse that is centered at the
origin of a coordinate frame. Let us call this ellipse—which
is a polar plot of the inverse square root of the moment of
inertia of a curve segment about a straight line through the
center of mass of the curve segment, as a function of the
orientation of the straight line—thecurvature ellipseof the
curve segment.4 Our motivation for this name will soon
become apparent. Fig. 11 illustrates the curvature ellipse of
a curve segment.

The curvature ellipse of a curve segment is specified
completely by the ellipse’s major axis, its minor axis, and
its orientation. Themajor axis of the curvature ellipse
has twice the magnitude of the inverse square root of the
minimum moment of inertia of the curve segment about
lines through the center of mass of the curve segment,
and theminor axis of the curvature ellipse has twice the

4Those of you who are familiar with differential geometry [8] will
notice that the curvature ellipse of a curve segment is analogous to Dupin’s
indicatrix of a surface at an elliptic surface point. Dupin’s indicatrix of
a surface at any point is a polar plot of the inverse square root of the
absolute normal curvature of the surface at that point, as a function of the
direction (tangent to the surface at the point) in which we compute the
curvature.

Fig. 11. Curvature ellipse.

magnitude of the inverse square root of themaximum
moment of inertia of the curve segment about lines through
the center of mass of the curve segment. If the major and
minor axes of the curvature ellipse of a curve segment
are unequal, then the orientation of the major axis of the
curvature ellipse is the orientation through the center of
mass of the curve segment about which the moment of
inertia of the curve segment is minimum; for a straight-line
segment, this orientation is along the straight-line segment.
Let us now superimpose our - and - coordinate
frames—the former, the frame in which we describe the
curvature ellipse of a curve segment, and the latter, the
frame in which we measure the moments of inertia of
that curve segment. Further, let us denote by the
counterclockwise angle with respect to the-axis of the
major axis of the curvature ellipse of the curve segment
spanned by the sliding window centered at position. Then,
as is simply the that minimizes our earlier expression
for , we can determine by solving
for . In doing so, on simplification, we get

Note that this expression for provides us with the coun-
terclockwise angles, with respect to the-axis, of both
the major and minor axes of the curvature ellipse; these
axes are, of course, 90apart. Substitution for into the
expression for quickly determines which is which,
also providing the magnitudes of the semi-major and semi-
minor axes of the curvature ellipse.

Our discussion of the curvature ellipse to this point would
suggest that, to compare the shapes of two curve segments,
we should measure and compare the axes and orientations
of the curvature ellipses of the two curve segments. How-
ever, it turns out that such direct measurements of curvature
ellipses are not robust, this lack of robustness defeating our
purpose in measuring the moments of inertia—namely, to
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devise robust descriptors of shape. Hence, we need to adopt
a different tack.

Now, it is clear that if we rotate, about its origin, the
- coordinate frame in which we measure the moments

of inertia of a curve segment, the curvature ellipse of the
curve segment will simply rotate in the - coordinate
frame without changing its shape. Then, from the well-
known properties of conics under rotation, we can conclude
that the following combinations of the coefficients of the
curvature ellipse are invariant under rotation of the-

axes: and (For a
description of these properties of a conic, see [17, art. 157];
you can also verify the rotational invariance of the two
terms by directly substituting into each of the two terms
the expansions for , , and under rotation of the -
axes.) Let us now combine the two rotationally invariant
terms as follows:

It is easy to see that for every straight-line segment,
and that for every circle. We can further establish
quickly that these two values ofactually bound . First, it
is well known that the combination of
the coefficients of an ellipse is nonnegative; hence, .
Next, it is clear that

Hence . Thus we have established that
.

Now, we know from our earlier discussion that, barring
the degenerate case of a circle, the orientationof a
curvature ellipse satisfies

Then let us define the following two measures of a curve
segment’s shape derived from the curve segment’s curva-
ture ellipse:

(4)

(5)

where and are positive weights. Together, and
provide us with measures of the curvature and orienta-

tion of a curve segment that are independent of scale—that

is, that are invariant under uniform magnification or reduc-
tion of the curve segment. Let us, for brevity, calland
curvature-ellipse measures. We measure ,
instead of and individually, because and

are too ambiguous and unreliable individually.
For instance, is zero for every straight-line segment,
and tends to become unreliable as we flex a
straight-line segment toward a complete circle. In the
measurements , each component mitigates
the ambiguity/unreliability of the other. My choices of

and are prompted in large part by my finding
them to be more reliable and useful in practice than other
pairs of shape measures based on the curvature ellipse I
investigated.

I. Moving Coordinate Frame and Saturation

We now have a complete list of the signature charac-
teristics we shall represent as functions of the normalized
length of the signature. These characteristics, each of
which we shall compute over a window under variation
of this window’s position along the length of the signature,
are , , , , and , as defined in (1)–(5). Of these
five characteristics, the center-of-mass coordinatesand

and the torque exerted about the origin depend on
the location of the origin of the coordinate frame in
which we compute the signature characteristics, whereas
the curvature-ellipse measures and do not depend
on this location. On the other hand, only the torqueof
the five signature characteristics does not depend on the
orientation of the axes of the coordinate frame in which we
compute the characteristics. Given this dependence of our
signature characteristics on the location and orientation of
our coordinate frame, we are faced with deciding how to
choose our coordinate frame as our computation window
slides along the length of the signature.

With regard to the choice of a coordinate frame for our
computations of signature characteristics, one possibility is
to use one or a few fixed globally computed coordinate
frames for all our computations; we could, for instance, use
a single globally computed coordinate frame that has its ori-
gin at the overall center of mass of the signature and its axes
aligned with the global axes of maximum and minimum
inertia of the signature—these axes of inertia being unique,
barring degenerate cases. Another possibility with regard
to the choice of a coordinate frame for our computations
of signature characteristics is to use a coordinate frame
whose position—and perhaps orientation—is computed lo-
cally along the signature and evolves as the computation
window slides along the length of the signature. The latter
alternative is more attractive than the former as the global
computation of a coordinate frame has the severe draw-
back that it globalizes the effect of isolated discrepancies
between signatures on their comparison. One example of
isolated discrepancies between two signatures is a disparity
in the sizes of corresponding gaps in the two signatures. It
is important that we strive to localize the effects of isolated
discrepancies between signatures on their comparison as
such discrepancies are often produced inadvertently by
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genuine signers. Such localization could serve to distinguish
isolated discrepancies from distributed discrepancies in our
comparisons of signatures, a distinction that is important
because systematic distributed discrepancies are typically
more indicative of a forgery than are isolated discrepancies.
As we can localize the effects of isolated discrepancies
between signatures on their comparisons only by adopting
a moving coordinate frame that is computed locally, let us
adopt such a frame of the type we shall discuss next. As an
aside, a moving coordinate frame that is computed locally
opens up the possibility of applying state-based approaches
to recognition and verification, one such approach based on
hidden Markov models being popular in speech recognition
[16].

Let us attach our coordinate frame, which we use for our
computations of signature characteristics over the sliding
computation window, to the center of mass of the signature
computed over another window that too is sliding along
the length of the signature. However, for at least two
reasons, let us align the axes of this moving coordinate
frame permanently with the global axes of maximum and
minimum inertia, rather than compute these axes locally.
The first reason for aligning our coordinate-frame axes
permanently with globally computed axes, rather than com-
puting these axes locally, is one of robustness: Compared
to the computation of the coordinate frame’s origin locally,
the computation of the coordinate frame’s axes locally is
not robust. The second reason for aligning our coordinate-
frame axes permanently with globally computed axes is
that, whereas, once we have begun writing, where we write
next tends to depend on where we wrote last, the baseline
and slant of our writing tends to be determined relatively
globally.

Now, we have two windows that are sliding over the
length of the signature—one window over which we com-
pute the origin of our moving coordinate frame, and the
other window over which we measure the center of mass,
the torque, and the moments of inertia of the signature. Let
us call the window over which we compute the origin of
our moving coordinate frame thecoordinate-frame window;
we earlier named the window over which we compute
the signature characteristics the computation window. As
illustrated in Fig. 12, both windows slide in unison over
the length of the signature with a fixed—but, in general,
nonzero—displacement between their centers. Further, the
two windows have fixed—but, in general, unequal—widths.
Now, just as we weighted the computation window in
Section V-E by a Gaussian centered over the window, let us
weight the coordinate-frame window by its own Gaussian
centered over the window.

As already indicated in Section V-E, a reasonable choice
for the width of the computation window is a fraction
of the length of an individual “character.” If this width
is too large, our measurements become nonlocal, and if
it is too small, our measurements become nonrobust. The
same reasoning applies to the width of the coordinate-frame
window, except here we can get away by making the width
a factor larger than the width of the computation window; a

Fig. 12. Sliding computation and coordinate-frame windows.

broader coordinate-frame window provides greater stability
to the coordinate frame, but does not sacrifice the localness
of our measurements to the same extent as would a similar
increase in the width of the sliding computation window.
As far as the displacement between the two windows
goes, the greater this displacement, the wider shall be the
impact of a local discrepancy between any two signatures,
eventually making our measurements nonrobust by intro-
ducing significant variations in the relative positions of the
computation window and its coordinate frame even across
genuine signatures. On the other hand, the smaller this
displacement, the less robust shall be our measurement of
torque, as we discussed in Section V-G. Again, a reasonable
choice for the displacement between the two windows is a
fraction of the length of an individual “character.”

Now, assuming that a typical signature has ten “char-
acters,” a fraction of the length of a “character” is a
few hundredths of the complete length of the signature.
Under this assumption, we could fix the widths of our
windows, and of the displacement between them, to be
each a few hundredths of the complete length of the
signature. Of course, a better strategy might be to analyze
the overall complexity of the shape of each signature
that we model—by determining how many “wiggles” it
has—and then base our widths and displacement on this
complexity. Alternately, we could try out a variety of
widths and displacements when we model a signature, to
discover, and subsequently use, the smallest widths and
largest displacement that provide robust measurements.

In our discussion to this point, we have assumed implic-
itly that both our sliding windows, the computation window
and the coordinate-frame window, span continuous curve
segments. However, given that in our parameterization of
the signature over the normalized distance traveled along
the signature with pen down, we did not provide any special
treatment to instances of pen up, our sliding windows will,
on occasion, span gaps in curves, these gaps tending to
be quite variable in size across multiple instances of the
signature, and, often, inadvertent. Gaps along the length
of a signature, in themselves, do not pose any conceptual
hurdle to the motion of our sliding windows: As illustrated
in Fig. 13, all we have to do whenever either of our
sliding windows spans a gap is split the window, with
its (Gaussian) weighting function, across the gap in the
curve segment. Although such window splitting suffices
to characterize a signature continuously across gaps in
the signature, it is not sufficient for our purposes: Our
measurements of signature characteristics in the vicinity of
gaps in a signature could exhibit unusually large magnitudes
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Fig. 13. Sliding window across gap in curve.

when the gaps are large, these large magnitudes posing
the threat of disproportionately influencing comparisons of
characteristic functions to their models.

In particular, whenever our coordinate-frame window is
largely on one side of a large gap, and our computation
window is largely on the other side of the gap, the center-
of-mass coordinates and the torque exerted about the origin
could all exhibit unusually large magnitudes. Recall, how-
ever, that our curvature-ellipse measures are independent
of the position of the coordinate frame. Further, even
when individual moments of inertia assume unusually large
magnitudes owing to the computation window spanning a
large gap, as we established in Section V-H, our curvature-
ellipse measures remain well bounded. Note, however, that
when our computation window does span a large gap, our
curvature-ellipse measures will tend to have values similar
to those for a straight-line segment spanning the large gap.

As already indicated, unusually large magnitudes of the
center-of-mass coordinates and the torque exerted about
the origin pose the threat of disproportionately influencing
comparisons of the center-of-mass and torque characteristic
functions to their models. We can circumvent this threat
caused by large spatial gaps in the pen-down trajectories
of signatures bysaturating our measurements of the two
center-of-mass coordinates and the torque exerted about the
origin, employing, in each case, the followingsaturation
function:

where is the original unsaturated measurement,
is the same measurement after saturation, and

—which is positive and chosen individually for
each signature characteristic—determines the degree of
saturation. This saturation function is illustrated in Fig. 14.
When , but when

, the signs of and
always being the same.

J. Weighted Cross Correlation and Warping

No signer is uniformly consistent along the entire length
of the signer’s signature. Further, the consistency of a
signer at a particular location along a signature depends
on the signature characteristic we examine. As a result,
whenever we measure a characteristic of a signature along
its length, we must also measure, as a function of the

Fig. 14. Saturation function.

normalized length of the signature, the consistency of the
characteristic across multiple instances of the signature.
Doing so, for every characteristic function of a signature,
we shall have aconsistency functionthat provides a measure
of the consistency of the characteristic function along its
length. A natural choice for the consistency function of a
characteristic function is the inverse standard deviation of
the characteristic function at each point along its length. Let
us adopt this choice. Once we have a consistency function
to accompany the prototype of a characteristic function,
whenever we compare a characteristic function to this
prototype, we shall weight each of the two functions along
its length by the consistency function of the prototype.

The question now is, how do we compare a characteristic
function to its prototype? or equivalently, what is our
measure of error in comparing a characteristic function
to its prototype? Of the several error measures that are
possible—for instance, the integral of the difference of
squares—I have chosen (1 cross correlation), where we
compute thecross correlationbetween the characteristic
function and its prototype while weighting each function
by the consistency function of the prototype. Theweighted
cross correlationof two functions and , each
function weighted by the function , is by definition

Cross Correlation

If is a characteristic function here and is this
characteristic function’s prototype, and is the proto-
type’s consistency function, then for us, , , and

will be related as follows: and
.

When we compute the various individual weighted cross
correlations between a signature’s characteristic functions
and their models, we will allow all the characteristic func-
tions of the signature—or, equivalently, all the models of
these functions—towarpsimultaneously along their lengths
such that an overall error measure is minimized. This
simultaneous warping of the individual functions must, of
course, be constrained to be identical at identical abscissae
along the lengths of all the functions because the abscissa of
each function is the same length parameter, whose each
specific value corresponds to a specific physical location
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Fig. 15. Example illustrating characteristic functions of signatures.

along the signature. Warping allows us to accommodate
instances of signatures that deviate from one another with
respect to the fractional lengths of their various parts, such
deviations being unavoidable even when all the signatures
are produced by the original signer.

Time warping is common in speech recognition [16], and
I have also seen it previously in signature verification [18].
However, I have not encountered length warping in the
signature-verification literature. Length warping, of course,
assumes parameterization over the signature’s length, which
I have not seen either in the signature-verification literature.
Neither have I previously encountered the notion of the
weighted cross correlation as we have discussed here.

VI. A LGORITHM

As I indicated in the introduction, not everyone produces
consistently shaped signatures. A signature is particularly
likely to be shaped inconsistently when it is produced ballis-
tically, rather than deliberately (see Section IV). Whereas,
given sufficient motivation—perhaps, simply the conve-
nience of not having to sign more than once—many signers
might produce consistent shapes, some signers might even
then be unable to do so. It is for this reason that we cannot
rely on the local shapes of signatures alone for signature
verification, even though such a reliance is preferable when
possible. Hence, we must invoke two models for each
signature: one local and purely shape based, and the other
global and based on both shape and time.

In particular, my algorithm has three distinct compo-
nents—normalization, description, and comparison—each
of which I outline broadly next.Normalizationmakes the
algorithm largely independent of the orientation and aspect
of a signature; the algorithm is inherently independent of the
position and size of a signature.Descriptiongenerates the

five characteristic functions of the signature.Comparison
computes a net measure of error between the signature
characteristics and their prototypes.

A. Normalization

1) Fit a polygon to the ordered set of samples of the on-
line signature, and keep a count of the total number of
pen-down samples, a number proportional to the total
pen-down time under uniform temporal sampling.

2) Compute the jitter (Section V-B). There is no further
need for the original samples.

3) Compute the global axes of maximum and minimum
inertia of the signature through the signature’s global
center of mass, and then rotate the signature to
normalize the orientation of these axes.

4) Compute the aspect (Section V-C) of the signature
from the fitted polygon, and then scale the signa-
ture either vertically or horizontally to normalize its
aspect.

B. Description

1) Parametrize the signature over its length(Section V-
D), measured along the fitted and normalized polygon
as a fraction of the total length.

2) Compute a moving coordinate frame (Section V-I).
3) In the moving coordinate frame, measure, as a func-

tion of , the following signature characteristics over
a sliding computation window (Section V-E): the
coordinates and of the center of mass
(Section V-F), the torque exerted about the ori-
gin (Section V-G), and the curvature-ellipse measures

and (Section V-H). All these computations
can be conveniently performed over a discretethat
is uniformly sampled.
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Fig. 15. (Continued.)Example illustrating characteristic functions of signatures.

4) Saturate the characteristic functions (Section V-I) and
normalize each function to have a zero mean.

C. Comparison

1) Simultaneously warp the five characteristic functions
to maximize the sum of the weighted cross correlation
of each function with respect to its model (Section V-
J), and retain a measure of the total warping per-
formed.

2) Compute the error between each characteristic
function and its model by subtracting from 1.0 the
weighted cross correlation between the two functions;
then normalize each such error by first subtracting
its mean from it and then dividing the resultant
by the error’s standard deviation; finally, bias each
normalized error and then threshold it so as to make
it 0.0 if it is negative.

3) Compute the root mean square (rms) (Section V-A) of
the individual biased and thresholded errors between
each of the five characteristic functions and their
models (C-2) to arrive at thenet local error.

4) Compute the rms (Section V-A) of the differences
between the following four global entities and their
means, after first normalizing each difference by the
entity’s standard deviation, to arrive at thenet global
error: jitter (A-2), aspect (A-4), warping (C-1), and
the total number of pen-down samples (A-1).

5) Compute the weighted and biased harmonic mean
(Section V-A) of the net local error (C-3) and the net
global error (C-4)—the weights and biases reflecting
the overall spatial consistency of the signature across
its multiple instances—to arrive at thenet error,
which provides us a measure of the discrepancy

between the signature being verified and its model
and whose comparison against a threshold determines
whether we accept or reject the signature being ver-
ified.

VII. EXAMPLE

I now illustrate the algorithm we discussed in
Section VI—specifically, the nature of the characteristic
functions that lie at the core of this algorithm—through
an example. This pedagogically contrived example, shown
in Fig. 15, has four signatures, all shown in the left-most
column: Proceeding from top to bottom, the first signature
is a typical genuine, the second signature has a loop
missing from its “w,” the third signature has an extra
loop in its “w,” and the fourth signature is written with a
slant. Shown alongside each signature, in a row, are the
characteristic functions of that signature: Proceeding from
left to right, shown in sequence are , , , ,
and , with the result of the weighted cross correlation
of each characteristic function with its prototype indicated
at the lower right of the function. The prototype of each
characteristic function is shown immediately above the
four corresponding characteristic functions of the four
signatures, and immediately above each prototype is shown
the consistency function of the signature characteristic,
this function bounded below by zero.

As is clear from the figure, local deviations in the shape of
a signature from its typical genuine instance lead to locally
identifiable deviations in the characteristic functions from
their prototypes, and systematic deviations in the shape
of a signature from its typical genuine instance lead to
distributed deviations in the characteristic functions from
their prototypes. In particular, note that the characteristic
functions of the two signatures with the extra and missing
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loop in “w” each differ from its prototype roughly within
the interval of between 0.5 and 0.6; because of the
discrepancy between the shapes of the signatures, the
characteristic functions of these two signatures are neither
aligned with each other along theaxis, nor are they aligned
with their prototypes (until we warp theaxis).

VIII. D ATABASE RESULTS

The three databases on which I tested my implementation
of the algorithm we discussed in Section VI were compiled
by Bell Laboratories and are proprietary. Let us call these
databasesDB1, DB2, and DB3, calling their unionDB.
Before we examine the various results on these databases,
let us spend a few moments on their backgrounds.

A. Database 1 (DB1)

1) This database was created using a Bell Laboratories
in-house developmental LCD writing tablet with a
tethered pen. The spatial resolution of the tablet
was uniformly about 0.08 mm, or about 300 dots/in,
along both the horizontal and vertical directions, and
the temporal sampling rate of the tablet was about
300 samples/s. Although this tablet provided the pen
pressure in addition to the pen position, the pen
pressure was used solely to determine whether the
pen was in contact with the writing surface.

2) The total number of genuine signatures was 904 from
59 different signers. Fifteen signers were women and
eight were left handed, and all of these signers were
Bell Laboratories employees, ranging in age from 19
to 66. After first being allowed to get accustomed
to using the writing tablet, each signer was asked to
provide ten genuine signatures in a first session. At
the end of each signature, each signer was allowed to
delete and redo the signature if, in the opinion of the
signer, the signature was not “OK.” After an interval
of at least a week, each genuine signer was called
back for a second session to provide either five more,
or, in four cases, nine or ten more, genuine signatures.

3) The total number of forgeries was 325, with either
five or ten forgery attempts for each of the 59 different
genuine signatures. These forgeries were performed
by 32 willing participants from among those who
provided the genuine signatures. Each forger was
shown copies of the genuine signatures to be forged
and allowed to forge one or more of them either five
times, or, in two cases, ten times after first being
allowed to practice the signature. Cash rewards were
used to motivate the forgers.

4) There were actually 60 genuine signers who partic-
ipated in the creation of the database, but all the
signatures related to one signer were subsequently
removed from the database when it was realized that
this signer had expanded his first initial, which he had
used in his first set of signatures, into its full form in
the second set.

B. Database 2 (DB2)

1) This database was created using an NCR 5990 LCD
writing tablet with a tethered pen. The spatial reso-
lution of the tablet was uniformly about 0.08 mm,
or about 300 dots/in, along both the horizontal and
vertical directions, and the temporal sampling rate of
the tablet was uniformly 200 samples/s. Although this
tablet provided the pen position not only when the
pen was touching the writing surface, but also when
the pen was in the vicinity of this surface, the pen-up
information was not used.

2) The total number of genuine signatures was 982 from
102 different signers. These signers were all from Bell
Laboratories and NCR, and all signatures from each
signer were collected in a single session outside a
cafeteria.

3) The total number of forgeries was 401, with these
forgeries collected in the same sessions as the genuine
signatures. Each forger was shown a copy of the
signature to be forged on a computer screen, and the
effort made by a forger to reproduce the displayed sig-
nature varied from negligible to substantial, including
prior practice.

4) There were originally many more genuine signa-
tures and forgeries in the database, but subsequently
only those genuine signatures were retained that had
roughly 80–120% of the strokes of their typical
specimen, and only those forgeries were retained
that were attempts to replicate the shape of the
genuine signature and that had roughly 80–120% of
the strokes of the genuine signature. This pruning of
the database was not a deliberate attempt to rid it of
its so-called goats, which we discussed in Section IV,
but rather an attempt to ensure that estimates of
performance subsequently achieved on the database
would be more realistic than they might otherwise
be. Further, this pruning was supervised not by re-
searchers developing signature-verification software,
but rather by NCR, which manufactured the writing
tablets used and was seeking to bundle such software
with these tablets.

C. Database 3 (DB3)

1) The same as for DB2.
2) The total number of genuine signatures was 790 from

43 different signers. These signers were all from
Wright State University, and all signatures from each
signer were collected in a single session.

3) The total number of forgeries was 424, these forgeries
collected in the same fashion as for DB2.

4) The same as for DB2.

The details I have provided for each database are what
I have been able to glean from their various accounts.
I was not a participant in the creation of any of the
databases. From accounts of the creation of these databases,
it seems safe to conclude that DB1 was created in the most
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Fig. 16. Error tradeoff curves when modeling with first six gen-
uine signatures.

carefully controlled fashion, and that DB3 was created in
the least carefully controlled fashion. Owing to the varying
circumstances of their creation, I shall report not only the
error tradeoff curve (see Section III) for the three databases
collectively, but also the error tradeoff curves for the three
databases individually.

In Fig. 16, I show the error tradeoff curves for the
three databases individually and collectively, labeling the
last curve DB. Each curve was generated using the first
six genuine signatures of each signer to build a model
of the signer’s signature, this model requiring about 600
bytes of storage after some straightforward compression.
Under these circumstances, DB1 provides a test set of 550
genuines from 59 signers in addition to 325 forgeries, DB2
provides a test set of 370 genuines from 102 signers in
addition to 401 forgeries, and DB3 provides a test set of
532 genuines from 43 signers in addition to 424 forgeries.
For the curve labeled DB in Fig. 16, then, the total number
of genuines tested is 1452 from 204 signers, and the total
number of forgeries tested is 1150.

I used six genuine signatures to build each signature
model because, at least on these databases, as I increased
the number of signatures for modeling up to six, there were
tangible, albeit increasingly smaller, improvements in the
various error tradeoff curves. Figs. 17 and 18 illustrate the
error tradeoff curves when, instead of the first six signa-
tures, we use the first five and four signatures, respectively,
of each signer to model the signer’s signature. On these
databases, I did not see a tangible improvement in the error
tradeoff curves as I increased the number of signatures for
modeling up from six; also, the test set of genuines became
increasingly smaller, which made the results less reliable.

It is clear from the various error tradeoff curves that
each such curve depends highly on the nature of the
database on which the curve was produced. For instance,
in Fig. 16, the equal-error rates for DB1–DB3 are about

Fig. 17. Error tradeoff curves when modeling with first five
genuine signatures.

Fig. 18. Error tradeoff curves when modeling with first four
genuine signatures.

3%, 2%, and 5%, respectively. The error tradeoff curves
for DB2 are clearly the best, perhaps because the forgeries
were not well motivated, and the error tradeoff curves
for DB3 are clearly the worst, perhaps because not only
were the forgeries not well motivated, but also because the
acquisition of genuine signatures was largely unsupervised
and from college students, who are likely to have relatively
unpracticed signatures. Note here also that the arrangement
used for the creation of forgeries in DB2 and DB3 is not
ideal for successful forgery as any forger who tries to
replicate the shape of a signature displayed on a computer
screen without first memorizing the shape of this signature,
would need to pause on several occasions to look up at the
displayed signature for guidance. I am speculating.
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The equal-error rate of my implementation’s net error
tradeoff curve in Fig. 16 is about 3.6%. An operating point
that I consider reasonable for many credit card transactions
is at about 1% false accepts, which corresponds to about
7% false rejects on the net error tradeoff curve in Fig. 16.
At this operating point, statistically, approximately one out
of every 100 forgeries will be accepted and approximately
one out of every 14 genuine signatures will be rejected—an
instance of rejection requiring either a fresh signature, or
some other action.In practice, of course, the point on the
error tradeoff curve at which we operate in a particular
situation must depend on the relative penalties we would
incur for committing the two types of errors in that situation.
For instance, a substantial potential financial loss from
accepting a forgery would favor an operating point with a
low false-accept rate, whereas a high likelihood of customer
annoyance from rejecting a genuine signature provided by
the customer, such annoyance posing the risk of loosing
the customer, would favor an operating point with a low
false-reject rate. Perhaps, then, the signature-verification
system should provide a confidence measure—say, in the
range 100—rather than ayes or a no, leaving the final
decision of whether to accept a signature to the system
operator.

As I indicated in Section III, it is not just the per-
centage of false rejects that is important, but also the
visual similarity of the false rejects to genuine signatures.
Because of the shape-based nature of my scheme, we would
expect its false rejects to be visually dissimilar to genuine
signatures. This expectation seems to be largely met in
Fig. 19, where I show each of the false accepts (forgeries
accepted) and false rejects (genuines rejected) at the equal-
error point of the error tradeoff curve for DB1 in Fig. 16.
In Fig. 19, for each misclassified signature, I show first
(topmost) the original that was determined by the system
to be most representative of the six originals used to model
the signature. Immediately below this particular original, I
show two additional originals if, in my judgment, these
additional originals help us understand why a particular
subsequent signature was either falsely accepted or falsely
rejected. Below each set of originals I show the one or more
misclassified signatures pertinent to that set, providing to
the lower right of each misclassified signature, the final
(scaled) numerical error put out by my implementation.
The larger this error, the lower the degree of match of
the signature to the six original signatures. The threshold
demarcating genuines from forgeries at the equal-error point
for DB1 in Fig. 16 is 0.59. At this threshold, the total
number of forgeries accepted is ten, and the total number
of genuines rejected is 15, all shown in Fig. 19, each of
these numbers roughly 3% of the total number of forgeries
and genuines available for testing in DB1, respectively.

Note, here, that the equal-error point is unlikely to be our
operating point in practice. In particular, I have been using a
threshold of 0.50, rather than 0.59, to distinguish between
genuines and forgeries in demonstrations. This threshold
corresponds to about 7% false rejects and 1% false accepts
on the error tradeoff curve for DB in Fig. 16.

Let us now examine in turn the sets of signatures in
Fig. 19, whose originals are produced by 12 different
individuals.

• Signer 4 has a very simple, but inconsistent, signature,
and although the first two forgeries shown accepted
each seem to resemble at least one original closely,
the low error for the last forgery accepted surprises
me. At a threshold of 0.50, however, this last forgery
would be rejected.

• Signer 6 has a genuine rejected because of this gen-
uine’s apparent visual dissimilarity to its original.

• Signer 7 has a genuine rejected because of this gen-
uine’s apparent visual dissimilarity to its original.

• Signer 14 seems to have an inconsistent signature,
especially around the “D” and the “B.” As a result,
it has a forgery accepted, but with an error greater
than 0.50.

• Signer 18 has a genuine rejected because of this
genuine’s apparent visual dissimilarity to its original.

• Signer 19 has a signature that, on close visual ex-
amination, is revealed to be relatively consistent only
around “Ell,” these first three characters then greatly
influencing the final error. All the genuines rejected
are rejected at least in part because of the insertion of
a middle initial in each of them, and from among the
forgeries accepted, the second appears to be the most
visually similar to the originals and it alone has an
error less than 0.50.

• Signer 33 has two genuines rejected, apparently be-
cause of the dissimilarity of the first word of these
genuines to the first word of their originals.

• Signer 38 has a forgery accepted that looks quite
similar to the original, at least at first glance, but this
acceptance is with an error greater than 0.50.

• Signer 40 has a genuine rejected because of this
genuine’s apparent visual dissimilarity to its original.
This signer also has a forgery accepted because of this
forgery’s apparent visual similarity to the original, but
this acceptance is with an error greater than 0.50.

• Signer 46 has two genuines rejected, apparently be-
cause of the dissimilarity of the shape, size, and
position of the “S” and the shape of the “y” in each
rejected genuine with respect to its originals. This
variability in the “S” and the “y” could, of course,
be weighted out if we had originals from this signer
exhibiting this variability.

• Signer 48 has a genuine rejected because of this
genuine’s apparent visual dissimilarity to its original.

• Signer 54 has three genuines rejected because of the
obvious discrepancies between the last word of these
genuines and their original. Notice how well the errors
here correlate with the apparent visual discrepancies.

I indicated in Section IV that the performance of a veri-
fication system on a database is typically limited by the
database’s goats, which are generally few in number and
might vary greatly from one database to another. For DB1,
at the equal-error point, notice that Signers 4, 19, and
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Fig. 19. Errors at the equal-error point for database DB1 when modeling with first six genuine
signatures.

54—just three out of the 59 signers in all—had their
signatures account for seven of the ten forgeries accepted
and for six of the 15 genuines rejected. At the equal-error
point for the combined complete database, DB, it turns out
that the signatures of ten signers out of 204 signers in all,
about 5%, account for 35 of the 41 total forgeries accepted,

about 85%, and for 21 of the 53 total genuines rejected,
about 40%; in arriving at these numbers, I included every
signer whose genuines and forgeries led to three or more
errors.

I have shown you only misclassified signatures to this
point. In Fig. 20, I show all the (correctly classified)
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Fig. 20. All signatures pertinent to one signer from database
DB1.

signatures pertinent to one particular signer from DB1. In
the figure, on the left on top are the first six signatures
provided by this signer, these signatures used to create a
model of the signer’s signature. Once again, the topmost
signature from among the six is the one that was determined
to be most representative of the six originals. I have shown
all six signatures so that you may discover intrasigner
variations among them. Below the six originals, I show five
attempted forgeries, and, to the right of these originals and
forgeries, I show nine genuines, indicating alongside each
classified signature, to its right, the (scaled) numerical error
put out for that signature by my implementation. In this
example, the errors for the genuines and the forgeries are
clearly bimodal, this bimodality facilitating straightforward
discrimination between the genuines and the forgeries.
Notice that one significant distinction between the forgeries
and the six originals is the way in which the “a’s” are
looped. In comparing the various signatures visually, note
not only variations between the forms of corresponding
characters, but also between their sizes and their orienta-
tions relative to the rest of the signature of which they are
a part.

A final point I would like to make is this: For any
given database, perhaps a composite of multiple individual
databases, we can always fine tune a signature-verification
system to provide the best overall error tradeoff curve for
that database—for the three databases here, I was able to
bring my overall equal-error rate down to about 2.5%—but
we must always ask ourselves, does this fine tuning make
common sensein the real world? If the fine tuning does
not make common sense, it is in all likelihood exploiting a
peculiarity of the database. Then, if we do plan to introduce
the system into the marketplace, we are better off without
the fine tuning.

IX. A SIGNATURE-VERIFICATION SYSTEM

In the marketplace, it is desirable that automatic signature
verification be feasible not only over the network, but also

on site—with little delay and at low cost. Automatic on-site
verification of handwritten signatures is now feasible for
two reasons: 1) high-fidelity digital models of signatures,
each such model requiring at least of the order of a
few hundred bytes of storage,5 can now be stored on
smart cards, and 2) the computation required to verify
a signature, given the signature’s model, can now easily
be accomplished in real time on a relatively inexpensive
personal computer. Asmart card, although often designed
to look and feel just like an ordinary credit card, offers
secure internal data storage unlike currently used credit
cards, whose storage is restricted to the magnetic stripe at
the back of the card. As a result, whereas ordinary currently
used credit cards typically provide only a few hundred bytes
of storage, smart cards provide at least several kilobytes
of storage. Data transfer to and from a smart card is
accomplished through a smart-card reader.

An alternative to signature verification that is completely
on site is to store all the signature models in a central
database, and then perhaps transmit each signature to be
verified to the site of this database to perform the ver-
ification there; such verification could be performed, for
instance, in conjunction with a credit-worthiness check.
Storing the signature models in a central database has
the disadvantage that, to verify signatures, we would have
to access this database, which in all likelihood would be
located remotely. However, central storage would allow us
to update, gradually and transparently to signers, the model
of each signer’s signature as this signature evolves over
time. With regard to the net risk due to possible tampering
of stored signature models, it is unclear which storage
alternative poses a greater risk: Whereas a central database
can probably be made more secure against tampering than
can individual smart cards, any compromise in the security
of a database is likely to lead to more dire consequences.
We could, of course, store signature models both on smart
cards and in a central database simultaneously, retrieving,
in each instance of signature verification, the model of the
signature from the source that better suits the constraints
and demands of the particular situation.

Let me now describe a particular system for automatic
on-site signature verification that executes in real time
the algorithm we discussed in Section VI. This system,
shown in the photograph in Fig. 21, has four principal
hardware components: a notebook personal computer, an
electronic writing tablet, a smart card, and a smart-card
reader. The writing tablet and the smart-card reader are

5I arrived at this rough estimate for the storage required for a high-
fidelity digital model of a typical on-line handwritten signature—of the
order of a few hundred bytes—through the following thumbnail argument.
Assume that a signature has ten “characters” each of whose properties we
must represent at ten locations to construct a high-fidelity model of the
signature. Irrespective of the particular properties of each “character” we
choose to represent at each location, for our model to have a high fidelity,
we must capture at least the average and the variance of the position,
the orientation, and the curvature of the signature at each location across
multiple instances of the signature. Then, for a high-fidelity digital model
of a signature, we inherently need several bytes to represent the properties
of the signature at each location, and, therefore, several hundred bytes to
represent the properties of the signature at all locations.
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Fig. 21. A signature-verification system.

both connected to the notebook computer through serial
ports; one serial port is standard on the notebook computer
and another serial port is configured through a PCMCIA-
slot adapter. The writing tablet captures on-line signatures
and sends them to the notebook computer, which creates
signature models, storing each model on a smart card
from which we can subsequently retrieve the model for
on-site signature verification. The notebook computer is
based on the Intel 486 DX2/50 MHz microprocessor, and
the electronic writing tablet is an LCD writing tablet with
a maximum uniform spatial resolution of 512 dots/in (or
about 0.05 mm) along both the horizontal and vertical
directions, and with a uniform temporal sampling rate
of 200 samples/s. However, owing to on-tablet signature
smoothing and compression, these spatial and temporal
sampling rates of the writing tablet were not available to
us uniformly.

We tested the described system most extensively using
six signatures to model each signature; this choice is based
on the database results we discussed in Section VIII. The
model of each signature we stored on a smart card required
about 600 bytes, after some straightforward compression.
Although we do not require a visual sample of a signature
for automatic verification, we stored one such sample

signature on the smart card too, again after straightfor-
ward compression; the storage requirement for a specimen
signature was typically between a few hundred bytes and
a kilobyte, depending on the signature. Such a sample
signature allows the human operating the system not only to
override the automatic result, but also show the signer why
a particular signature was rejected. Note that even though
our signature model is relatively unique to a signature,
we cannot effectively recover a specimen signature from
its model. Thus potential forgers cannot recreate a card
owner’s signature from just the model stored on the card:
They need access to the specimen signature stored on the
card if the card is all they have to work with. Hence, we
should consider the interesting possibility of encoding the
specimen signature we store on the card on the basis of
a PIN, which is known only to the rightful owner of the
smart card, and which is necessary to decode the signature
for visual display.

Modeling a signature from its six specimens takes about
20 s, and verifying a signature takes about 2 s. After veri-
fication, a window pops up displaying an answer between

100 and 100, a positive value indicating acceptance of
a signature as a genuine, and a negative value indicating
its rejection—the larger the magnitude, the greater the
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acceptance or rejection. The threshold zero, which distin-
guishes forgeries from genuines here, corresponds to 0.50
on the scale of Figs. 19 and 20, and it corresponds roughly
to 7% false rejects and 1% false accepts on the error
tradeoff curve for DB in Fig. 16. Typically, we observed
a correlation between the magnitude of the answer and
the degree of apparent visual similarity or dissimilarity
between the signature being verified and its previously
stored specimen. Anecdotally, if the model acquired was
good, which was the case roughly nine out of every
ten times, the quality of verification greatly impressed
users of the system. In the roughly one out of every
ten times that the performance of the system was not as
impressive, remodeling often corrected the situation. This
anecdotal observation in laboratory settings is in line with
the observation in Section IV, supported by Section VIII,
that the goats of a system typically limit its performance.

In any event, some signers will always be too inconsistent
to allow us to build a model of their signatures that will
allow us to both accept genuine signatures and reject
forgeries reliably. Based on the database results of the
preceding section, this number is probably at around 5%.
We have three choices for such signers: We can attempt
to force them to be consistent—something not always
possible—we can insist that these signers use an additional
mechanism of identification, such as a PIN, or we can
altogether abandon the use of signatures for such signers,
taking recourse to other mechanisms of identification and
authorization.

X. CONCLUSION

What is primarily lacking in this investigation of au-
tomatic on-line signature verification is a field test of a
real-time on-line on-site system based on the signature-
verification algorithm we discussed. In my judgment, the
necessary conditions that I laid out for such an undertaking
in Section III have been met: Most users of the described
system in a laboratory setting have expressed satisfaction at
its performance, and the error tradeoff curves for the system
on three different databases seem reasonable. These are my
suggestions for a field trial.

• The signatures acquired and verified must be purpose-
ful, as for gaining access to a facility.

• The signatures of each participant in the trial must be
verified over an extended period of time, as individual
signatures tend to vary from day to day.

• The signatures must be from individuals who can
easily be contacted during and after the trial for their
feedback on the system, individuals such as employees
of an organization.

• After a signer provides a signature for verification,
but prior to its automatic verification, the signer must
be asked to rate the quality of the signature—perhaps
from very goodto very bad. This information would
help us establish the correlation, if any, between the
perception of signers of the quality of their signatures
and the answers generated by the system, such cor-
relation being important for successfully introducing

the system into the marketplace, as we discussed in
Section III.

• In the event of signature rejection by the verification
system, we must have a clear fall-back procedure, such
as manual verification of the signature by comparing
it against its stored visual sample, this sample being
accessible only by entering a password or a PIN known
only to the original signer.

Further, it would help to conduct the field trial in multiple
phases, at least two, the experience of conducting one phase
allowing us to modify the succeeding phase.

Topics in on-line signature verification that deserve our
further attention include the following:

• better models for signatures whose instances are not
shaped consistently or for which we have fewer than
six instances to build a model;

• acquisition of instances of a signature used to build
its model over multiple sessions, rather than over a
single session, to obtain a more representative variety
of instances of the signature;

• invocation of multiple models for individuals with
multiple distinct signatures;

• statistically well-founded procedures for determining
the parameters of a model from the relatively few in-
stances of a signature available to model the signature;

• automatic adaptation of models to signatures as they
evolve over time;

• theoretically sound statistical framework to exploit
fully each of the various individual error measures
generated from comparing the characteristic functions
of a signature to their prototypes;

• partial matching of signatures, highlighting discrepan-
cies if they are specific;

• identification of problem signers, including those who
are unusually inconsistent or have signatures that are
trivial to forge;

• comparison of signatures to their models at multiple
or personalized resolutions, rather than at a single
common resolution.

Over and above these issues, we must also further in-
vestigate the usefulness of pen dynamics during on-line
signature production in automatic on-line signature veri-
fication. Such dynamics might include not only velocities
and forces, but also the varying orientation of the pen, and
the way in which a signer grasps a pen.

ACKNOWLEDGMENT

E. Pednault created the writing-tablet interface that first
made it possible for me to conduct live experiments,
such experiments crucial to the progress of my effort
since the start. D. Weimer, with his uncommon intuition
and artistic skills, highlighted the inadequacy of my early
developmental efforts through live experiments. J. Bromley
provided me two of the three databases on which I tested
various implementations of my algorithm, and W. Turin
provided me the third database. W. DePope unhesitatingly
addressed my innumerable personal-computer questions,

238 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 2, FEBRUARY 1997



and R. Carlisle ported my C code to a personal computer
that was coupled to a writing tablet and to a smart-
card reader, configuring the signature-verification system
I described.

L. Rabiner and N. Jayant supported this effort through
a critical phase in 1993, and A. Netravali and P. Henry
provided me an environment for its unhindered completion
in 1994, when I first reported this work in an internal
Bell Laboratories Technical Memorandum. I am especially
grateful to A. Netravali for his unwavering support.

REFERENCES

[1] G. Chrystal,Algebra: An Elementary Text-Book for the Higher
Classes of Secondary Schools and for Colleges, pt. 1, 7th ed.
New York: Chelsea, 1964.

[2] H. D. Crane and J. S. Ostrem, “Automatic signature verification
using a three-axis force-sensitive pen,”IEEE Trans. Syst., Man,
Cybern., vol. SMC-13, no. 3, pp. 329–337, May–June 1983.

[3] J. J. Denier van der Gon and J. Ph. Thuring, “The guiding
of human writing movements,”Kybernetik, vol. 2, no. 4, pp.
145–148, Feb. 1965.

[4] I. Evett and R. N. Totty, “A study of the variation in the
dimensions of genuine signatures,”J. Forensic Sci. Soc., vol.
25, pp. 207–215, 1985.

[5] W. R. Harrison,Suspect Documents: Their Scientific Exami-
nation. New York: Praeger, 1958 (reprinted by Nelson-Hall,
Chicago).

[6] T. Hastie, E. Kishon, M. Clark, and J. Fan, “A model for
signature verification,” inProc. 1991 IEEE Int. Conf. on Syst.,
Man, Cybern., vol. 1, Charlottesville, VA, Oct. 1991, pp.
191–196.

[7] F. Leclerc and R. Plamondon, “Automatic signature verification:
The state of the art—1989–1993,”Int. J. Patt. Recognit. and
Artificial Intell., vol. 8, no. 3, pp. 643–660, June 1994.

[8] M. M. Lipschutz,Differential Geometry. New York: McGraw-
Hill, 1969.

[9] G. Lorette and R. Plamondon, “Dynamic approaches to
handwritten signature verification,” inComputer Processing
of Handwriting, R. Plamondon and C. G. Leedham, Eds.
Singapore: World Scientific, 1990, pp. 21–47.

[10] J. Mathyer, “The expert examination of signatures,”J. Criminal
Law, Criminol. Police Sci., vol. 52, pp. 122–133, 1961.

[11] V. S. Nalwa, A Guided Tour of Computer Vision. Reading,
MA: Addison-Wesley, 1993.

[12] W. Nelson and E. Kishon, “Use of dynamic features for
signature verification,” inProc. 1991 IEEE Int. Conf. on Syst.,

Man, Cybern., vol. 1, Charlottesville, VA, Oct. 1991, pp.
201–205.

[13] A. S. Osborn,Questioned Documents, 2nd ed. Albany, NY:
Boyd, 1929 (reprinted by Nelson-Hall, Chicago).

[14] J. R. Parks, “Automated personal identification methods for use
with smart cards,” inIntegrated Circuit Cards, Tags and Tokens:
New Technology and Applications, P. L. Hawkes, D. W. Davies,
and W. L. Price, Eds. Oxford, U.K.: BSP, 1990, pp. 92–135.

[15] R. Plamondon and G. Lorette, “Identity verification from au-
tomatic processing of signatures: Bibliography,” inComputer
Processing of Handwriting, R. Plamondon and C. G. Leedham,
Eds. Singapore: World Scientific, 1990, pp. 65–85.

[16] L. Rabiner and B.-H. Juang,Fundamentals of Speech Recogni-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[17] G. Salmon,A Treatise on Conic Sections, 6th ed. New York:
Chelsea, 1954.

[18] Y. Sato and K. Kogure, “Online signature verification based on
shape, motion, and writing pressure,” inProc. 6th Int. Conf. on
Patt. Recognit., Munich, Germany, Oct. 1982, pp. 823–826.

[19] T. K. Worthington, T. J. Chainer, J. D. Williford, and S. C.
Gundersen, “IBM dynamic signature verification,” inCom-
puter Security: The Practical Issues in a Troubled World, J. B.
Grimson and H.-J. Kugler, Eds. Amsterdam: North-Holland
Elsevier, 1985, pp. 129–154.

[20] P. Zhao, A. Higashi, and Y. Sato, “On-line signature verification
by adaptively weighted DP matching,”IEICE Trans. Informat.
Syst., vol. E79-D, no. 5, pp. 535–541, May 1996.

Vishvjit S. Nalwa received the B.Tech. degree
in electrical engineering from the Indian Institute
of Technology, Kanpur, in 1983. He received the
M.S. and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, in 1985
and 1987, respectively.

Since 1987, he has been with Bell Labo-
ratories, Holmdel, NJ. His research interests
span the processing and capture of signals with
geometric interpretations, as in computer and
human vision. He is the author ofA Guided

Tour of Computer Vision(Addison-Wesley, 1993). He holds several U.S.
and international patents. He is currently an Associate Editor of IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE.

Dr. Nalwa received the First Prize for Academic Excellence in the Core
Curriculum and the General Proficiency Prize for the Best Graduating
Student in Electrical Engineering, both jointly, at the Indian Institute of
Technology, Kanpur. He received the Information Systems Laboratory
Fellowship from Sanford University. He has since won several awards for
his research.

NALWA: AUTOMATIC ON-LINE SIGNATURE VERIFICATION 239


